Metamath Proof Explorer


Theorem probdsb

Description: The probability of the complement of a set. That is, the probability that the event A does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016)

Ref Expression
Assertion probdsb ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) = ( 1 − ( 𝑃𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → 𝑃 ∈ Prob )
2 1 unveldomd ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → dom 𝑃 ∈ dom 𝑃 )
3 simpr ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → 𝐴 ∈ dom 𝑃 )
4 probdif ( ( 𝑃 ∈ Prob ∧ dom 𝑃 ∈ dom 𝑃𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) = ( ( 𝑃 dom 𝑃 ) − ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) ) )
5 1 2 3 4 syl3anc ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) = ( ( 𝑃 dom 𝑃 ) − ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) ) )
6 probtot ( 𝑃 ∈ Prob → ( 𝑃 dom 𝑃 ) = 1 )
7 elssuni ( 𝐴 ∈ dom 𝑃𝐴 dom 𝑃 )
8 sseqin2 ( 𝐴 dom 𝑃 ↔ ( dom 𝑃𝐴 ) = 𝐴 )
9 7 8 sylib ( 𝐴 ∈ dom 𝑃 → ( dom 𝑃𝐴 ) = 𝐴 )
10 9 fveq2d ( 𝐴 ∈ dom 𝑃 → ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) = ( 𝑃𝐴 ) )
11 6 10 oveqan12d ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( ( 𝑃 dom 𝑃 ) − ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) ) = ( 1 − ( 𝑃𝐴 ) ) )
12 5 11 eqtrd ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) = ( 1 − ( 𝑃𝐴 ) ) )