| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → 𝑃 ∈ Prob ) |
| 2 |
1
|
unveldomd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ∪ dom 𝑃 ∈ dom 𝑃 ) |
| 3 |
|
simpr |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → 𝐴 ∈ dom 𝑃 ) |
| 4 |
|
probdif |
⊢ ( ( 𝑃 ∈ Prob ∧ ∪ dom 𝑃 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( ∪ dom 𝑃 ∖ 𝐴 ) ) = ( ( 𝑃 ‘ ∪ dom 𝑃 ) − ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) ) ) |
| 5 |
1 2 3 4
|
syl3anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( ∪ dom 𝑃 ∖ 𝐴 ) ) = ( ( 𝑃 ‘ ∪ dom 𝑃 ) − ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) ) ) |
| 6 |
|
probtot |
⊢ ( 𝑃 ∈ Prob → ( 𝑃 ‘ ∪ dom 𝑃 ) = 1 ) |
| 7 |
|
elssuni |
⊢ ( 𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃 ) |
| 8 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ ∪ dom 𝑃 ↔ ( ∪ dom 𝑃 ∩ 𝐴 ) = 𝐴 ) |
| 9 |
7 8
|
sylib |
⊢ ( 𝐴 ∈ dom 𝑃 → ( ∪ dom 𝑃 ∩ 𝐴 ) = 𝐴 ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝐴 ∈ dom 𝑃 → ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) = ( 𝑃 ‘ 𝐴 ) ) |
| 11 |
6 10
|
oveqan12d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( ( 𝑃 ‘ ∪ dom 𝑃 ) − ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) ) = ( 1 − ( 𝑃 ‘ 𝐴 ) ) ) |
| 12 |
5 11
|
eqtrd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( ∪ dom 𝑃 ∖ 𝐴 ) ) = ( 1 − ( 𝑃 ‘ 𝐴 ) ) ) |