Metamath Proof Explorer


Theorem probdsb

Description: The probability of the complement of a set. That is, the probability that the event A does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016)

Ref Expression
Assertion probdsb P Prob A dom P P dom P A = 1 P A

Proof

Step Hyp Ref Expression
1 simpl P Prob A dom P P Prob
2 1 unveldomd P Prob A dom P dom P dom P
3 simpr P Prob A dom P A dom P
4 probdif P Prob dom P dom P A dom P P dom P A = P dom P P dom P A
5 1 2 3 4 syl3anc P Prob A dom P P dom P A = P dom P P dom P A
6 probtot P Prob P dom P = 1
7 elssuni A dom P A dom P
8 sseqin2 A dom P dom P A = A
9 7 8 sylib A dom P dom P A = A
10 9 fveq2d A dom P P dom P A = P A
11 6 10 oveqan12d P Prob A dom P P dom P P dom P A = 1 P A
12 5 11 eqtrd P Prob A dom P P dom P A = 1 P A