| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psr1lmod.p |  |-  P = ( PwSer1 ` R ) | 
						
							| 2 |  | fvi |  |-  ( R e. _V -> ( _I ` R ) = R ) | 
						
							| 3 | 1 | psr1sca |  |-  ( R e. _V -> R = ( Scalar ` P ) ) | 
						
							| 4 | 2 3 | eqtrd |  |-  ( R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) | 
						
							| 5 |  | scaid |  |-  Scalar = Slot ( Scalar ` ndx ) | 
						
							| 6 | 5 | str0 |  |-  (/) = ( Scalar ` (/) ) | 
						
							| 7 |  | fvprc |  |-  ( -. R e. _V -> ( _I ` R ) = (/) ) | 
						
							| 8 |  | fvprc |  |-  ( -. R e. _V -> ( PwSer1 ` R ) = (/) ) | 
						
							| 9 | 1 8 | eqtrid |  |-  ( -. R e. _V -> P = (/) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( -. R e. _V -> ( Scalar ` P ) = ( Scalar ` (/) ) ) | 
						
							| 11 | 6 7 10 | 3eqtr4a |  |-  ( -. R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) | 
						
							| 12 | 4 11 | pm2.61i |  |-  ( _I ` R ) = ( Scalar ` P ) |