Step |
Hyp |
Ref |
Expression |
1 |
|
psr1lmod.p |
|- P = ( PwSer1 ` R ) |
2 |
|
fvi |
|- ( R e. _V -> ( _I ` R ) = R ) |
3 |
1
|
psr1sca |
|- ( R e. _V -> R = ( Scalar ` P ) ) |
4 |
2 3
|
eqtrd |
|- ( R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
5 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
6 |
5
|
str0 |
|- (/) = ( Scalar ` (/) ) |
7 |
|
fvprc |
|- ( -. R e. _V -> ( _I ` R ) = (/) ) |
8 |
|
fvprc |
|- ( -. R e. _V -> ( PwSer1 ` R ) = (/) ) |
9 |
1 8
|
eqtrid |
|- ( -. R e. _V -> P = (/) ) |
10 |
9
|
fveq2d |
|- ( -. R e. _V -> ( Scalar ` P ) = ( Scalar ` (/) ) ) |
11 |
6 7 10
|
3eqtr4a |
|- ( -. R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
12 |
4 11
|
pm2.61i |
|- ( _I ` R ) = ( Scalar ` P ) |