| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psr1lmod.p | ⊢ 𝑃  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 2 |  | fvi | ⊢ ( 𝑅  ∈  V  →  (  I  ‘ 𝑅 )  =  𝑅 ) | 
						
							| 3 | 1 | psr1sca | ⊢ ( 𝑅  ∈  V  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 4 | 2 3 | eqtrd | ⊢ ( 𝑅  ∈  V  →  (  I  ‘ 𝑅 )  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 5 |  | scaid | ⊢ Scalar  =  Slot  ( Scalar ‘ ndx ) | 
						
							| 6 | 5 | str0 | ⊢ ∅  =  ( Scalar ‘ ∅ ) | 
						
							| 7 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  (  I  ‘ 𝑅 )  =  ∅ ) | 
						
							| 8 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  ( PwSer1 ‘ 𝑅 )  =  ∅ ) | 
						
							| 9 | 1 8 | eqtrid | ⊢ ( ¬  𝑅  ∈  V  →  𝑃  =  ∅ ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ¬  𝑅  ∈  V  →  ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ ∅ ) ) | 
						
							| 11 | 6 7 10 | 3eqtr4a | ⊢ ( ¬  𝑅  ∈  V  →  (  I  ‘ 𝑅 )  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 12 | 4 11 | pm2.61i | ⊢ (  I  ‘ 𝑅 )  =  ( Scalar ‘ 𝑃 ) |