Metamath Proof Explorer


Theorem psr1sca2

Description: Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 26-Mar-2015) (Revised by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypothesis psr1lmod.p P = PwSer 1 R
Assertion psr1sca2 I R = Scalar P

Proof

Step Hyp Ref Expression
1 psr1lmod.p P = PwSer 1 R
2 fvi R V I R = R
3 1 psr1sca R V R = Scalar P
4 2 3 eqtrd R V I R = Scalar P
5 scaid Scalar = Slot Scalar ndx
6 5 str0 = Scalar
7 fvprc ¬ R V I R =
8 fvprc ¬ R V PwSer 1 R =
9 1 8 eqtrid ¬ R V P =
10 9 fveq2d ¬ R V Scalar P = Scalar
11 6 7 10 3eqtr4a ¬ R V I R = Scalar P
12 4 11 pm2.61i I R = Scalar P