Description: A pair <. F , P >. represents a path if it represents either a simple path or a cycle. The exclusivity only holds for non-trivial paths ( F =/= (/) ), see cyclnspth . (Contributed by AV, 2-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | pthspthcyc | |- ( F ( Paths ` G ) P <-> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthisspthorcycl | |- ( F ( Paths ` G ) P -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
|
2 | spthispth | |- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
|
3 | cyclispth | |- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
|
4 | 2 3 | jaoi | |- ( ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) -> F ( Paths ` G ) P ) |
5 | 1 4 | impbii | |- ( F ( Paths ` G ) P <-> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |