Description: A pair <. F , P >. represents a path if it represents either a simple path or a cycle. The exclusivity only holds for non-trivial paths ( F =/= (/) ), see cyclnspth . (Contributed by AV, 2-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthspthcyc | |- ( F ( Paths ` G ) P <-> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthisspthorcycl | |- ( F ( Paths ` G ) P -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
|
| 2 | spthispth | |- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
|
| 3 | cyclispth | |- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
|
| 4 | 2 3 | jaoi | |- ( ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) -> F ( Paths ` G ) P ) |
| 5 | 1 4 | impbii | |- ( F ( Paths ` G ) P <-> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |