Metamath Proof Explorer


Theorem pw2divscld

Description: Division closure for powers of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2divscld.1
|- ( ph -> A e. No )
pw2divscld.2
|- ( ph -> N e. NN0_s )
Assertion pw2divscld
|- ( ph -> ( A /su ( 2s ^su N ) ) e. No )

Proof

Step Hyp Ref Expression
1 pw2divscld.1
 |-  ( ph -> A e. No )
2 pw2divscld.2
 |-  ( ph -> N e. NN0_s )
3 2sno
 |-  2s e. No
4 expscl
 |-  ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No )
5 3 2 4 sylancr
 |-  ( ph -> ( 2s ^su N ) e. No )
6 2ne0s
 |-  2s =/= 0s
7 expsne0
 |-  ( ( 2s e. No /\ 2s =/= 0s /\ N e. NN0_s ) -> ( 2s ^su N ) =/= 0s )
8 3 6 2 7 mp3an12i
 |-  ( ph -> ( 2s ^su N ) =/= 0s )
9 pw2recs
 |-  ( N e. NN0_s -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s )
10 2 9 syl
 |-  ( ph -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s )
11 1 5 8 10 divsclwd
 |-  ( ph -> ( A /su ( 2s ^su N ) ) e. No )