| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divscld.1 |
|- ( ph -> A e. No ) |
| 2 |
|
pw2divscld.2 |
|- ( ph -> N e. NN0_s ) |
| 3 |
|
2sno |
|- 2s e. No |
| 4 |
|
expscl |
|- ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No ) |
| 5 |
3 2 4
|
sylancr |
|- ( ph -> ( 2s ^su N ) e. No ) |
| 6 |
|
2ne0s |
|- 2s =/= 0s |
| 7 |
|
expsne0 |
|- ( ( 2s e. No /\ 2s =/= 0s /\ N e. NN0_s ) -> ( 2s ^su N ) =/= 0s ) |
| 8 |
3 6 2 7
|
mp3an12i |
|- ( ph -> ( 2s ^su N ) =/= 0s ) |
| 9 |
|
pw2recs |
|- ( N e. NN0_s -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s ) |
| 10 |
2 9
|
syl |
|- ( ph -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s ) |
| 11 |
1 5 8 10
|
divsclwd |
|- ( ph -> ( A /su ( 2s ^su N ) ) e. No ) |