| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|- ( A e. QQ -> 0 e. RR ) |
| 2 |
|
qre |
|- ( A e. QQ -> A e. RR ) |
| 3 |
|
qdencl |
|- ( A e. QQ -> ( denom ` A ) e. NN ) |
| 4 |
3
|
nnred |
|- ( A e. QQ -> ( denom ` A ) e. RR ) |
| 5 |
3
|
nngt0d |
|- ( A e. QQ -> 0 < ( denom ` A ) ) |
| 6 |
|
ltmul1 |
|- ( ( 0 e. RR /\ A e. RR /\ ( ( denom ` A ) e. RR /\ 0 < ( denom ` A ) ) ) -> ( 0 < A <-> ( 0 x. ( denom ` A ) ) < ( A x. ( denom ` A ) ) ) ) |
| 7 |
1 2 4 5 6
|
syl112anc |
|- ( A e. QQ -> ( 0 < A <-> ( 0 x. ( denom ` A ) ) < ( A x. ( denom ` A ) ) ) ) |
| 8 |
3
|
nncnd |
|- ( A e. QQ -> ( denom ` A ) e. CC ) |
| 9 |
8
|
mul02d |
|- ( A e. QQ -> ( 0 x. ( denom ` A ) ) = 0 ) |
| 10 |
|
qmuldeneqnum |
|- ( A e. QQ -> ( A x. ( denom ` A ) ) = ( numer ` A ) ) |
| 11 |
9 10
|
breq12d |
|- ( A e. QQ -> ( ( 0 x. ( denom ` A ) ) < ( A x. ( denom ` A ) ) <-> 0 < ( numer ` A ) ) ) |
| 12 |
7 11
|
bitrd |
|- ( A e. QQ -> ( 0 < A <-> 0 < ( numer ` A ) ) ) |