Step |
Hyp |
Ref |
Expression |
1 |
|
ltmul1a |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) < ( B x. C ) ) |
2 |
1
|
ex |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B -> ( A x. C ) < ( B x. C ) ) ) |
3 |
|
oveq1 |
|- ( A = B -> ( A x. C ) = ( B x. C ) ) |
4 |
3
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A = B -> ( A x. C ) = ( B x. C ) ) ) |
5 |
|
ltmul1a |
|- ( ( ( B e. RR /\ A e. RR /\ ( C e. RR /\ 0 < C ) ) /\ B < A ) -> ( B x. C ) < ( A x. C ) ) |
6 |
5
|
ex |
|- ( ( B e. RR /\ A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B < A -> ( B x. C ) < ( A x. C ) ) ) |
7 |
6
|
3com12 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B < A -> ( B x. C ) < ( A x. C ) ) ) |
8 |
4 7
|
orim12d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A = B \/ B < A ) -> ( ( A x. C ) = ( B x. C ) \/ ( B x. C ) < ( A x. C ) ) ) ) |
9 |
8
|
con3d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( -. ( ( A x. C ) = ( B x. C ) \/ ( B x. C ) < ( A x. C ) ) -> -. ( A = B \/ B < A ) ) ) |
10 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. RR ) |
11 |
|
simp3l |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. RR ) |
12 |
10 11
|
remulcld |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A x. C ) e. RR ) |
13 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> B e. RR ) |
14 |
13 11
|
remulcld |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B x. C ) e. RR ) |
15 |
12 14
|
lttrid |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < ( B x. C ) <-> -. ( ( A x. C ) = ( B x. C ) \/ ( B x. C ) < ( A x. C ) ) ) ) |
16 |
10 13
|
lttrid |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
17 |
9 15 16
|
3imtr4d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < ( B x. C ) -> A < B ) ) |
18 |
2 17
|
impbid |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A x. C ) < ( B x. C ) ) ) |