| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> B e. RR ) |
| 2 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A e. RR ) |
| 3 |
1 2
|
resubcld |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( B - A ) e. RR ) |
| 4 |
|
simpl3l |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> C e. RR ) |
| 5 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A < B ) |
| 6 |
2 1
|
posdifd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A < B <-> 0 < ( B - A ) ) ) |
| 7 |
5 6
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( B - A ) ) |
| 8 |
|
simpl3r |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < C ) |
| 9 |
3 4 7 8
|
mulgt0d |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( ( B - A ) x. C ) ) |
| 10 |
1
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> B e. CC ) |
| 11 |
2
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A e. CC ) |
| 12 |
4
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> C e. CC ) |
| 13 |
10 11 12
|
subdird |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( ( B - A ) x. C ) = ( ( B x. C ) - ( A x. C ) ) ) |
| 14 |
9 13
|
breqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( ( B x. C ) - ( A x. C ) ) ) |
| 15 |
2 4
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) e. RR ) |
| 16 |
1 4
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( B x. C ) e. RR ) |
| 17 |
15 16
|
posdifd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( ( A x. C ) < ( B x. C ) <-> 0 < ( ( B x. C ) - ( A x. C ) ) ) ) |
| 18 |
14 17
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) < ( B x. C ) ) |