Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> B e. RR ) |
2 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A e. RR ) |
3 |
1 2
|
resubcld |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( B - A ) e. RR ) |
4 |
|
simpl3l |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> C e. RR ) |
5 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A < B ) |
6 |
2 1
|
posdifd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A < B <-> 0 < ( B - A ) ) ) |
7 |
5 6
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( B - A ) ) |
8 |
|
simpl3r |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < C ) |
9 |
3 4 7 8
|
mulgt0d |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( ( B - A ) x. C ) ) |
10 |
1
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> B e. CC ) |
11 |
2
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A e. CC ) |
12 |
4
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> C e. CC ) |
13 |
10 11 12
|
subdird |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( ( B - A ) x. C ) = ( ( B x. C ) - ( A x. C ) ) ) |
14 |
9 13
|
breqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( ( B x. C ) - ( A x. C ) ) ) |
15 |
2 4
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) e. RR ) |
16 |
1 4
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( B x. C ) e. RR ) |
17 |
15 16
|
posdifd |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( ( A x. C ) < ( B x. C ) <-> 0 < ( ( B x. C ) - ( A x. C ) ) ) ) |
18 |
14 17
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) < ( B x. C ) ) |