| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsdisjALTV.1 |
|- ( ph -> EqvRel R ) |
| 2 |
|
qsdisjALTV.2 |
|- ( ph -> B e. ( A /. R ) ) |
| 3 |
|
qsdisjALTV.3 |
|- ( ph -> C e. ( A /. R ) ) |
| 4 |
|
eqid |
|- ( A /. R ) = ( A /. R ) |
| 5 |
|
eqeq1 |
|- ( [ x ] R = B -> ( [ x ] R = C <-> B = C ) ) |
| 6 |
|
ineq1 |
|- ( [ x ] R = B -> ( [ x ] R i^i C ) = ( B i^i C ) ) |
| 7 |
6
|
eqeq1d |
|- ( [ x ] R = B -> ( ( [ x ] R i^i C ) = (/) <-> ( B i^i C ) = (/) ) ) |
| 8 |
5 7
|
orbi12d |
|- ( [ x ] R = B -> ( ( [ x ] R = C \/ ( [ x ] R i^i C ) = (/) ) <-> ( B = C \/ ( B i^i C ) = (/) ) ) ) |
| 9 |
|
eqeq2 |
|- ( [ y ] R = C -> ( [ x ] R = [ y ] R <-> [ x ] R = C ) ) |
| 10 |
|
ineq2 |
|- ( [ y ] R = C -> ( [ x ] R i^i [ y ] R ) = ( [ x ] R i^i C ) ) |
| 11 |
10
|
eqeq1d |
|- ( [ y ] R = C -> ( ( [ x ] R i^i [ y ] R ) = (/) <-> ( [ x ] R i^i C ) = (/) ) ) |
| 12 |
9 11
|
orbi12d |
|- ( [ y ] R = C -> ( ( [ x ] R = [ y ] R \/ ( [ x ] R i^i [ y ] R ) = (/) ) <-> ( [ x ] R = C \/ ( [ x ] R i^i C ) = (/) ) ) ) |
| 13 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ y e. A ) -> EqvRel R ) |
| 14 |
|
eqvreldisj |
|- ( EqvRel R -> ( [ x ] R = [ y ] R \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) |
| 15 |
13 14
|
syl |
|- ( ( ( ph /\ x e. A ) /\ y e. A ) -> ( [ x ] R = [ y ] R \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) |
| 16 |
4 12 15
|
ectocld |
|- ( ( ( ph /\ x e. A ) /\ C e. ( A /. R ) ) -> ( [ x ] R = C \/ ( [ x ] R i^i C ) = (/) ) ) |
| 17 |
3 16
|
mpidan |
|- ( ( ph /\ x e. A ) -> ( [ x ] R = C \/ ( [ x ] R i^i C ) = (/) ) ) |
| 18 |
4 8 17
|
ectocld |
|- ( ( ph /\ B e. ( A /. R ) ) -> ( B = C \/ ( B i^i C ) = (/) ) ) |
| 19 |
2 18
|
mpdan |
|- ( ph -> ( B = C \/ ( B i^i C ) = (/) ) ) |