| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusmulrng.e |
|- .~ = ( R ~QG S ) |
| 2 |
|
qusmulrng.h |
|- H = ( R /s .~ ) |
| 3 |
|
qusmulrng.b |
|- B = ( Base ` R ) |
| 4 |
|
qusmulrng.p |
|- .x. = ( .r ` R ) |
| 5 |
|
qusmulrng.a |
|- .xb = ( .r ` H ) |
| 6 |
2
|
a1i |
|- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> H = ( R /s .~ ) ) |
| 7 |
3
|
a1i |
|- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> B = ( Base ` R ) ) |
| 8 |
3 1
|
eqger |
|- ( S e. ( SubGrp ` R ) -> .~ Er B ) |
| 9 |
8
|
3ad2ant3 |
|- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> .~ Er B ) |
| 10 |
|
simp1 |
|- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> R e. Rng ) |
| 11 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 12 |
3 1 11 4
|
2idlcpblrng |
|- ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> ( ( a .~ b /\ c .~ d ) -> ( a .x. c ) .~ ( b .x. d ) ) ) |
| 13 |
10
|
anim1i |
|- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( R e. Rng /\ ( b e. B /\ d e. B ) ) ) |
| 14 |
|
3anass |
|- ( ( R e. Rng /\ b e. B /\ d e. B ) <-> ( R e. Rng /\ ( b e. B /\ d e. B ) ) ) |
| 15 |
13 14
|
sylibr |
|- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( R e. Rng /\ b e. B /\ d e. B ) ) |
| 16 |
3 4
|
rngcl |
|- ( ( R e. Rng /\ b e. B /\ d e. B ) -> ( b .x. d ) e. B ) |
| 17 |
15 16
|
syl |
|- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( b .x. d ) e. B ) |
| 18 |
6 7 9 10 12 17 4 5
|
qusmulval |
|- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ X e. B /\ Y e. B ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |
| 19 |
18
|
3expb |
|- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( X e. B /\ Y e. B ) ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |