Step |
Hyp |
Ref |
Expression |
1 |
|
2idlcpblrng.x |
|- X = ( Base ` R ) |
2 |
|
2idlcpblrng.r |
|- E = ( R ~QG S ) |
3 |
|
2idlcpblrng.i |
|- I = ( 2Ideal ` R ) |
4 |
|
2idlcpblrng.t |
|- .x. = ( .r ` R ) |
5 |
|
simpl1 |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> R e. Rng ) |
6 |
|
simpl3 |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( SubGrp ` R ) ) |
7 |
1 2
|
eqger |
|- ( S e. ( SubGrp ` R ) -> E Er X ) |
8 |
6 7
|
syl |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> E Er X ) |
9 |
|
simprl |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> A E C ) |
10 |
8 9
|
ersym |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> C E A ) |
11 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
12 |
11
|
3ad2ant1 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Abel ) |
13 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
14 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
15 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
16 |
13 14 15 3
|
2idlelb |
|- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
17 |
16
|
simplbi |
|- ( S e. I -> S e. ( LIdeal ` R ) ) |
18 |
17
|
3ad2ant2 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( LIdeal ` R ) ) |
19 |
18
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( LIdeal ` R ) ) |
20 |
1 13
|
lidlss |
|- ( S e. ( LIdeal ` R ) -> S C_ X ) |
21 |
19 20
|
syl |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S C_ X ) |
22 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
23 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( C E A <-> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) ) |
24 |
12 21 23
|
syl2an2r |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C E A <-> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) ) |
25 |
10 24
|
mpbid |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C e. X /\ A e. X /\ ( A ( -g ` R ) C ) e. S ) ) |
26 |
25
|
simp2d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> A e. X ) |
27 |
|
simprr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> B E D ) |
28 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( B E D <-> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) ) |
29 |
12 21 28
|
syl2an2r |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B E D <-> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) ) |
30 |
27 29
|
mpbid |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B e. X /\ D e. X /\ ( D ( -g ` R ) B ) e. S ) ) |
31 |
30
|
simp1d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> B e. X ) |
32 |
1 4
|
rngcl |
|- ( ( R e. Rng /\ A e. X /\ B e. X ) -> ( A .x. B ) e. X ) |
33 |
5 26 31 32
|
syl3anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A .x. B ) e. X ) |
34 |
25
|
simp1d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> C e. X ) |
35 |
30
|
simp2d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> D e. X ) |
36 |
1 4
|
rngcl |
|- ( ( R e. Rng /\ C e. X /\ D e. X ) -> ( C .x. D ) e. X ) |
37 |
5 34 35 36
|
syl3anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. D ) e. X ) |
38 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
39 |
38
|
3ad2ant1 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Grp ) |
40 |
39
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> R e. Grp ) |
41 |
1 4
|
rngcl |
|- ( ( R e. Rng /\ C e. X /\ B e. X ) -> ( C .x. B ) e. X ) |
42 |
5 34 31 41
|
syl3anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. B ) e. X ) |
43 |
1 22
|
grpnnncan2 |
|- ( ( R e. Grp /\ ( ( C .x. D ) e. X /\ ( A .x. B ) e. X /\ ( C .x. B ) e. X ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) = ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) ) |
44 |
40 37 33 42 43
|
syl13anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) = ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) ) |
45 |
1 4 22 5 34 35 31
|
rngsubdi |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. ( D ( -g ` R ) B ) ) = ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ) |
46 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
47 |
46
|
subg0cl |
|- ( S e. ( SubGrp ` R ) -> ( 0g ` R ) e. S ) |
48 |
47
|
3ad2ant3 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( 0g ` R ) e. S ) |
49 |
48
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( 0g ` R ) e. S ) |
50 |
30
|
simp3d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( D ( -g ` R ) B ) e. S ) |
51 |
46 1 4 13
|
rnglidlmcl |
|- ( ( ( R e. Rng /\ S e. ( LIdeal ` R ) /\ ( 0g ` R ) e. S ) /\ ( C e. X /\ ( D ( -g ` R ) B ) e. S ) ) -> ( C .x. ( D ( -g ` R ) B ) ) e. S ) |
52 |
5 19 49 34 50 51
|
syl32anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( C .x. ( D ( -g ` R ) B ) ) e. S ) |
53 |
45 52
|
eqeltrrd |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) e. S ) |
54 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
55 |
1 4 14 54
|
opprmul |
|- ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) = ( ( A ( -g ` R ) C ) .x. B ) |
56 |
1 4 22 5 26 34 31
|
rngsubdir |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A ( -g ` R ) C ) .x. B ) = ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) |
57 |
55 56
|
eqtrid |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) = ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) |
58 |
14
|
opprrng |
|- ( R e. Rng -> ( oppR ` R ) e. Rng ) |
59 |
58
|
3ad2ant1 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( oppR ` R ) e. Rng ) |
60 |
59
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( oppR ` R ) e. Rng ) |
61 |
16
|
simprbi |
|- ( S e. I -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
62 |
61
|
3ad2ant2 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
63 |
62
|
adantr |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> S e. ( LIdeal ` ( oppR ` R ) ) ) |
64 |
25
|
simp3d |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A ( -g ` R ) C ) e. S ) |
65 |
14 46
|
oppr0 |
|- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
66 |
14 1
|
opprbas |
|- X = ( Base ` ( oppR ` R ) ) |
67 |
65 66 54 15
|
rnglidlmcl |
|- ( ( ( ( oppR ` R ) e. Rng /\ S e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. S ) /\ ( B e. X /\ ( A ( -g ` R ) C ) e. S ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) e. S ) |
68 |
60 63 49 31 64 67
|
syl32anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( B ( .r ` ( oppR ` R ) ) ( A ( -g ` R ) C ) ) e. S ) |
69 |
57 68
|
eqeltrrd |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) e. S ) |
70 |
22
|
subgsubcl |
|- ( ( S e. ( SubGrp ` R ) /\ ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) e. S /\ ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) e. S ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) e. S ) |
71 |
6 53 69 70
|
syl3anc |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( ( C .x. D ) ( -g ` R ) ( C .x. B ) ) ( -g ` R ) ( ( A .x. B ) ( -g ` R ) ( C .x. B ) ) ) e. S ) |
72 |
44 71
|
eqeltrrd |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) |
73 |
1 22 2
|
eqgabl |
|- ( ( R e. Abel /\ S C_ X ) -> ( ( A .x. B ) E ( C .x. D ) <-> ( ( A .x. B ) e. X /\ ( C .x. D ) e. X /\ ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) ) ) |
74 |
12 21 73
|
syl2an2r |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( ( A .x. B ) E ( C .x. D ) <-> ( ( A .x. B ) e. X /\ ( C .x. D ) e. X /\ ( ( C .x. D ) ( -g ` R ) ( A .x. B ) ) e. S ) ) ) |
75 |
33 37 72 74
|
mpbir3and |
|- ( ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) /\ ( A E C /\ B E D ) ) -> ( A .x. B ) E ( C .x. D ) ) |
76 |
75
|
ex |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( A E C /\ B E D ) -> ( A .x. B ) E ( C .x. D ) ) ) |