| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qus2idrng.u |  |-  U = ( R /s ( R ~QG S ) ) | 
						
							| 2 |  | qus2idrng.i |  |-  I = ( 2Ideal ` R ) | 
						
							| 3 | 1 | a1i |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> U = ( R /s ( R ~QG S ) ) ) | 
						
							| 4 |  | eqidd |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( Base ` R ) = ( Base ` R ) ) | 
						
							| 5 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 6 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 7 |  | simp3 |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( SubGrp ` R ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 9 |  | eqid |  |-  ( R ~QG S ) = ( R ~QG S ) | 
						
							| 10 | 8 9 | eqger |  |-  ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er ( Base ` R ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( R ~QG S ) Er ( Base ` R ) ) | 
						
							| 12 |  | rngabl |  |-  ( R e. Rng -> R e. Abel ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Abel ) | 
						
							| 14 |  | ablnsg |  |-  ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) | 
						
							| 16 | 7 15 | eleqtrrd |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( NrmSGrp ` R ) ) | 
						
							| 17 | 8 9 5 | eqgcpbl |  |-  ( S e. ( NrmSGrp ` R ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) | 
						
							| 19 | 8 9 2 6 | 2idlcpblrng |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) ) | 
						
							| 20 |  | simp1 |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Rng ) | 
						
							| 21 | 3 4 5 6 11 18 19 20 | qusrng |  |-  ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> U e. Rng ) |