Metamath Proof Explorer


Theorem qus2idrng

Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring ( qusring analog). (Contributed by AV, 23-Feb-2025)

Ref Expression
Hypotheses qus2idrng.u U=R/𝑠R~QGS
qus2idrng.i I=2IdealR
Assertion qus2idrng RRngSISSubGrpRURng

Proof

Step Hyp Ref Expression
1 qus2idrng.u U=R/𝑠R~QGS
2 qus2idrng.i I=2IdealR
3 1 a1i RRngSISSubGrpRU=R/𝑠R~QGS
4 eqidd RRngSISSubGrpRBaseR=BaseR
5 eqid +R=+R
6 eqid R=R
7 simp3 RRngSISSubGrpRSSubGrpR
8 eqid BaseR=BaseR
9 eqid R~QGS=R~QGS
10 8 9 eqger SSubGrpRR~QGSErBaseR
11 7 10 syl RRngSISSubGrpRR~QGSErBaseR
12 rngabl RRngRAbel
13 12 3ad2ant1 RRngSISSubGrpRRAbel
14 ablnsg RAbelNrmSGrpR=SubGrpR
15 13 14 syl RRngSISSubGrpRNrmSGrpR=SubGrpR
16 7 15 eleqtrrd RRngSISSubGrpRSNrmSGrpR
17 8 9 5 eqgcpbl SNrmSGrpRaR~QGScbR~QGSda+RbR~QGSc+Rd
18 16 17 syl RRngSISSubGrpRaR~QGScbR~QGSda+RbR~QGSc+Rd
19 8 9 2 6 2idlcpblrng RRngSISSubGrpRaR~QGScbR~QGSdaRbR~QGScRd
20 simp1 RRngSISSubGrpRRRng
21 3 4 5 6 11 18 19 20 qusrng RRngSISSubGrpRURng