Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring ( qusring analog). (Contributed by AV, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qus2idrng.u | |
|
qus2idrng.i | |
||
Assertion | qus2idrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qus2idrng.u | |
|
2 | qus2idrng.i | |
|
3 | 1 | a1i | |
4 | eqidd | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | simp3 | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 | eqger | |
11 | 7 10 | syl | |
12 | rngabl | |
|
13 | 12 | 3ad2ant1 | |
14 | ablnsg | |
|
15 | 13 14 | syl | |
16 | 7 15 | eleqtrrd | |
17 | 8 9 5 | eqgcpbl | |
18 | 16 17 | syl | |
19 | 8 9 2 6 | 2idlcpblrng | |
20 | simp1 | |
|
21 | 3 4 5 6 11 18 19 20 | qusrng | |