Step |
Hyp |
Ref |
Expression |
1 |
|
rngsubdi.b |
|- B = ( Base ` R ) |
2 |
|
rngsubdi.t |
|- .x. = ( .r ` R ) |
3 |
|
rngsubdi.m |
|- .- = ( -g ` R ) |
4 |
|
rngsubdi.r |
|- ( ph -> R e. Rng ) |
5 |
|
rngsubdi.x |
|- ( ph -> X e. B ) |
6 |
|
rngsubdi.y |
|- ( ph -> Y e. B ) |
7 |
|
rngsubdi.z |
|- ( ph -> Z e. B ) |
8 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
9 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
10 |
4 9
|
syl |
|- ( ph -> R e. Grp ) |
11 |
1 8 10 7
|
grpinvcld |
|- ( ph -> ( ( invg ` R ) ` Z ) e. B ) |
12 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
13 |
1 12 2
|
rngdi |
|- ( ( R e. Rng /\ ( X e. B /\ Y e. B /\ ( ( invg ` R ) ` Z ) e. B ) ) -> ( X .x. ( Y ( +g ` R ) ( ( invg ` R ) ` Z ) ) ) = ( ( X .x. Y ) ( +g ` R ) ( X .x. ( ( invg ` R ) ` Z ) ) ) ) |
14 |
4 5 6 11 13
|
syl13anc |
|- ( ph -> ( X .x. ( Y ( +g ` R ) ( ( invg ` R ) ` Z ) ) ) = ( ( X .x. Y ) ( +g ` R ) ( X .x. ( ( invg ` R ) ` Z ) ) ) ) |
15 |
1 2 8 4 5 7
|
rngmneg2 |
|- ( ph -> ( X .x. ( ( invg ` R ) ` Z ) ) = ( ( invg ` R ) ` ( X .x. Z ) ) ) |
16 |
15
|
oveq2d |
|- ( ph -> ( ( X .x. Y ) ( +g ` R ) ( X .x. ( ( invg ` R ) ` Z ) ) ) = ( ( X .x. Y ) ( +g ` R ) ( ( invg ` R ) ` ( X .x. Z ) ) ) ) |
17 |
14 16
|
eqtrd |
|- ( ph -> ( X .x. ( Y ( +g ` R ) ( ( invg ` R ) ` Z ) ) ) = ( ( X .x. Y ) ( +g ` R ) ( ( invg ` R ) ` ( X .x. Z ) ) ) ) |
18 |
1 12 8 3
|
grpsubval |
|- ( ( Y e. B /\ Z e. B ) -> ( Y .- Z ) = ( Y ( +g ` R ) ( ( invg ` R ) ` Z ) ) ) |
19 |
6 7 18
|
syl2anc |
|- ( ph -> ( Y .- Z ) = ( Y ( +g ` R ) ( ( invg ` R ) ` Z ) ) ) |
20 |
19
|
oveq2d |
|- ( ph -> ( X .x. ( Y .- Z ) ) = ( X .x. ( Y ( +g ` R ) ( ( invg ` R ) ` Z ) ) ) ) |
21 |
1 2
|
rngcl |
|- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
22 |
4 5 6 21
|
syl3anc |
|- ( ph -> ( X .x. Y ) e. B ) |
23 |
1 2
|
rngcl |
|- ( ( R e. Rng /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
24 |
4 5 7 23
|
syl3anc |
|- ( ph -> ( X .x. Z ) e. B ) |
25 |
1 12 8 3
|
grpsubval |
|- ( ( ( X .x. Y ) e. B /\ ( X .x. Z ) e. B ) -> ( ( X .x. Y ) .- ( X .x. Z ) ) = ( ( X .x. Y ) ( +g ` R ) ( ( invg ` R ) ` ( X .x. Z ) ) ) ) |
26 |
22 24 25
|
syl2anc |
|- ( ph -> ( ( X .x. Y ) .- ( X .x. Z ) ) = ( ( X .x. Y ) ( +g ` R ) ( ( invg ` R ) ` ( X .x. Z ) ) ) ) |
27 |
17 20 26
|
3eqtr4d |
|- ( ph -> ( X .x. ( Y .- Z ) ) = ( ( X .x. Y ) .- ( X .x. Z ) ) ) |