| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlcpblrng.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
| 2 |
|
2idlcpblrng.r |
⊢ 𝐸 = ( 𝑅 ~QG 𝑆 ) |
| 3 |
|
2idlcpblrng.i |
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) |
| 4 |
|
2idlcpblrng.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑅 ∈ Rng ) |
| 6 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 7 |
1 2
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → 𝐸 Er 𝑋 ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐸 Er 𝑋 ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐴 𝐸 𝐶 ) |
| 10 |
8 9
|
ersym |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐶 𝐸 𝐴 ) |
| 11 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
| 13 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 14 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 15 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
| 16 |
13 14 15 3
|
2idlelb |
⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 17 |
16
|
simplbi |
⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 20 |
1 13
|
lidlss |
⊢ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) → 𝑆 ⊆ 𝑋 ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ⊆ 𝑋 ) |
| 22 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 23 |
1 22 2
|
eqgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐶 𝐸 𝐴 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) ) |
| 24 |
12 21 23
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 𝐸 𝐴 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) ) |
| 25 |
10 24
|
mpbid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) |
| 26 |
25
|
simp2d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐴 ∈ 𝑋 ) |
| 27 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐵 𝐸 𝐷 ) |
| 28 |
1 22 2
|
eqgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐵 𝐸 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) ) |
| 29 |
12 21 28
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 𝐸 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) ) |
| 30 |
27 29
|
mpbid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) |
| 31 |
30
|
simp1d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐵 ∈ 𝑋 ) |
| 32 |
1 4
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 · 𝐵 ) ∈ 𝑋 ) |
| 33 |
5 26 31 32
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 · 𝐵 ) ∈ 𝑋 ) |
| 34 |
25
|
simp1d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐶 ∈ 𝑋 ) |
| 35 |
30
|
simp2d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐷 ∈ 𝑋 ) |
| 36 |
1 4
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐶 · 𝐷 ) ∈ 𝑋 ) |
| 37 |
5 34 35 36
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · 𝐷 ) ∈ 𝑋 ) |
| 38 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 39 |
38
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑅 ∈ Grp ) |
| 41 |
1 4
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐶 · 𝐵 ) ∈ 𝑋 ) |
| 42 |
5 34 31 41
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · 𝐵 ) ∈ 𝑋 ) |
| 43 |
1 22
|
grpnnncan2 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐵 ) ∈ 𝑋 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ) |
| 44 |
40 37 33 42 43
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ) |
| 45 |
1 4 22 5 34 35 31
|
rngsubdi |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
| 46 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 47 |
46
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
| 48 |
47
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
| 50 |
30
|
simp3d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) |
| 51 |
46 1 4 13
|
rnglidlmcl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) ∈ 𝑆 ) |
| 52 |
5 19 49 34 50 51
|
syl32anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) ∈ 𝑆 ) |
| 53 |
45 52
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) |
| 54 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
| 55 |
1 4 14 54
|
opprmul |
⊢ ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) = ( ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) · 𝐵 ) |
| 56 |
1 4 22 5 26 34 31
|
rngsubdir |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
| 57 |
55 56
|
eqtrid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
| 58 |
14
|
opprrng |
⊢ ( 𝑅 ∈ Rng → ( oppr ‘ 𝑅 ) ∈ Rng ) |
| 59 |
58
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( oppr ‘ 𝑅 ) ∈ Rng ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( oppr ‘ 𝑅 ) ∈ Rng ) |
| 61 |
16
|
simprbi |
⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 62 |
61
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 64 |
25
|
simp3d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) |
| 65 |
14 46
|
oppr0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
| 66 |
14 1
|
opprbas |
⊢ 𝑋 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 67 |
65 66 54 15
|
rnglidlmcl |
⊢ ( ( ( ( oppr ‘ 𝑅 ) ∈ Rng ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑆 ) ∧ ( 𝐵 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) ∈ 𝑆 ) |
| 68 |
60 63 49 31 64 67
|
syl32anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) ∈ 𝑆 ) |
| 69 |
57 68
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) |
| 70 |
22
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ∧ ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) ∈ 𝑆 ) |
| 71 |
6 53 69 70
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) ∈ 𝑆 ) |
| 72 |
44 71
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) |
| 73 |
1 22 2
|
eqgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ↔ ( ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) ) ) |
| 74 |
12 21 73
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ↔ ( ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) ) ) |
| 75 |
33 37 72 74
|
mpbir3and |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) |
| 76 |
75
|
ex |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |