| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngsubdi.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
rngsubdi.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
rngsubdi.m |
⊢ − = ( -g ‘ 𝑅 ) |
| 4 |
|
rngsubdi.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 5 |
|
rngsubdi.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
rngsubdi.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
rngsubdi.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 8 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 9 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 11 |
1 8 10 6
|
grpinvcld |
⊢ ( 𝜑 → ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 13 |
1 12 2
|
rngdir |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) ) |
| 14 |
4 5 11 7 13
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) ) |
| 15 |
1 2 8 4 6 7
|
rngmneg1 |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) · 𝑍 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) ) |
| 17 |
14 16
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) ) |
| 18 |
1 12 8 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 19 |
5 6 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) · 𝑍 ) = ( ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑍 ) ) |
| 21 |
1 2
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 22 |
4 5 7 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 23 |
1 2
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 · 𝑍 ) ∈ 𝐵 ) |
| 24 |
4 6 7 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 · 𝑍 ) ∈ 𝐵 ) |
| 25 |
1 12 8 3
|
grpsubval |
⊢ ( ( ( 𝑋 · 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 · 𝑍 ) ∈ 𝐵 ) → ( ( 𝑋 · 𝑍 ) − ( 𝑌 · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) ) |
| 26 |
22 24 25
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) − ( 𝑌 · 𝑍 ) ) = ( ( 𝑋 · 𝑍 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝑌 · 𝑍 ) ) ) ) |
| 27 |
17 20 26
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) − ( 𝑌 · 𝑍 ) ) ) |