Description: Obsolete version of r19.29vva as of 4-Nov-2024. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 29-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | r19.29vva.1 | |- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch ) | |
| r19.29vva.2 | |- ( ph -> E. x e. A E. y e. B ps ) | ||
| Assertion | r19.29vvaOLD | |- ( ph -> ch ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.29vva.1 | |- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch ) | |
| 2 | r19.29vva.2 | |- ( ph -> E. x e. A E. y e. B ps ) | |
| 3 | 1 2 | reximddv2 | |- ( ph -> E. x e. A E. y e. B ch ) | 
| 4 | id | |- ( ch -> ch ) | |
| 5 | 4 | rexlimivw | |- ( E. y e. B ch -> ch ) | 
| 6 | 5 | reximi | |- ( E. x e. A E. y e. B ch -> E. x e. A ch ) | 
| 7 | 4 | rexlimivw | |- ( E. x e. A ch -> ch ) | 
| 8 | 3 6 7 | 3syl | |- ( ph -> ch ) |