Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification r19.29vvaOLD  
				
		 
		
			
		 
		Description:   Obsolete version of r19.29vva  as of 4-Nov-2024.  (Contributed by Thierry Arnoux , 26-Nov-2017)   (Proof shortened by Wolf Lammen , 29-Jun-2023)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						r19.29vva.1 ⊢  ( ( ( ( 𝜑   ∧  𝑥   ∈  𝐴  )  ∧  𝑦   ∈  𝐵  )  ∧  𝜓  )  →  𝜒  )  
					
						r19.29vva.2 ⊢  ( 𝜑   →  ∃ 𝑥   ∈  𝐴  ∃ 𝑦   ∈  𝐵  𝜓  )  
				
					Assertion 
					r19.29vvaOLD ⊢   ( 𝜑   →  𝜒  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							r19.29vva.1 ⊢  ( ( ( ( 𝜑   ∧  𝑥   ∈  𝐴  )  ∧  𝑦   ∈  𝐵  )  ∧  𝜓  )  →  𝜒  )  
						
							2 
								
							 
							r19.29vva.2 ⊢  ( 𝜑   →  ∃ 𝑥   ∈  𝐴  ∃ 𝑦   ∈  𝐵  𝜓  )  
						
							3 
								1  2 
							 
							reximddv2 ⊢  ( 𝜑   →  ∃ 𝑥   ∈  𝐴  ∃ 𝑦   ∈  𝐵  𝜒  )  
						
							4 
								
							 
							id ⊢  ( 𝜒   →  𝜒  )  
						
							5 
								4 
							 
							rexlimivw ⊢  ( ∃ 𝑦   ∈  𝐵  𝜒   →  𝜒  )  
						
							6 
								5 
							 
							reximi ⊢  ( ∃ 𝑥   ∈  𝐴  ∃ 𝑦   ∈  𝐵  𝜒   →  ∃ 𝑥   ∈  𝐴  𝜒  )  
						
							7 
								4 
							 
							rexlimivw ⊢  ( ∃ 𝑥   ∈  𝐴  𝜒   →  𝜒  )  
						
							8 
								3  6  7 
							 
							3syl ⊢  ( 𝜑   →  𝜒  )