Description: Conditions for a class abstraction with a restricted existential quantification to be finite. (Contributed by Thierry Arnoux, 6-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabrexfi.1 | |- ( ph -> B e. Fin ) |
|
| rabrexfi.2 | |- ( ( ph /\ y e. B ) -> { x e. A | ps } e. Fin ) |
||
| Assertion | rabrexfi | |- ( ph -> { x e. A | E. y e. B ps } e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabrexfi.1 | |- ( ph -> B e. Fin ) |
|
| 2 | rabrexfi.2 | |- ( ( ph /\ y e. B ) -> { x e. A | ps } e. Fin ) |
|
| 3 | iunrab | |- U_ y e. B { x e. A | ps } = { x e. A | E. y e. B ps } |
|
| 4 | 2 | ralrimiva | |- ( ph -> A. y e. B { x e. A | ps } e. Fin ) |
| 5 | iunfi | |- ( ( B e. Fin /\ A. y e. B { x e. A | ps } e. Fin ) -> U_ y e. B { x e. A | ps } e. Fin ) |
|
| 6 | 1 4 5 | syl2anc | |- ( ph -> U_ y e. B { x e. A | ps } e. Fin ) |
| 7 | 3 6 | eqeltrrid | |- ( ph -> { x e. A | E. y e. B ps } e. Fin ) |