Description: Conditions for a class abstraction with a restricted existential quantification to be finite. (Contributed by Thierry Arnoux, 6-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabrexfi.1 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
rabrexfi.2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ Fin ) | ||
Assertion | rabrexfi | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ 𝐵 𝜓 } ∈ Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabrexfi.1 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
2 | rabrexfi.2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ Fin ) | |
3 | iunrab | ⊢ ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ 𝐵 𝜓 } | |
4 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ Fin ) |
5 | iunfi | ⊢ ( ( 𝐵 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ Fin ) → ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ Fin ) | |
6 | 1 4 5 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ Fin ) |
7 | 3 6 | eqeltrrid | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ 𝐵 𝜓 } ∈ Fin ) |