Metamath Proof Explorer


Theorem rabrexfi

Description: Conditions for a class abstraction with a restricted existential quantification to be finite. (Contributed by Thierry Arnoux, 6-Jul-2025)

Ref Expression
Hypotheses rabrexfi.1 ( 𝜑𝐵 ∈ Fin )
rabrexfi.2 ( ( 𝜑𝑦𝐵 ) → { 𝑥𝐴𝜓 } ∈ Fin )
Assertion rabrexfi ( 𝜑 → { 𝑥𝐴 ∣ ∃ 𝑦𝐵 𝜓 } ∈ Fin )

Proof

Step Hyp Ref Expression
1 rabrexfi.1 ( 𝜑𝐵 ∈ Fin )
2 rabrexfi.2 ( ( 𝜑𝑦𝐵 ) → { 𝑥𝐴𝜓 } ∈ Fin )
3 iunrab 𝑦𝐵 { 𝑥𝐴𝜓 } = { 𝑥𝐴 ∣ ∃ 𝑦𝐵 𝜓 }
4 2 ralrimiva ( 𝜑 → ∀ 𝑦𝐵 { 𝑥𝐴𝜓 } ∈ Fin )
5 iunfi ( ( 𝐵 ∈ Fin ∧ ∀ 𝑦𝐵 { 𝑥𝐴𝜓 } ∈ Fin ) → 𝑦𝐵 { 𝑥𝐴𝜓 } ∈ Fin )
6 1 4 5 syl2anc ( 𝜑 𝑦𝐵 { 𝑥𝐴𝜓 } ∈ Fin )
7 3 6 eqeltrrid ( 𝜑 → { 𝑥𝐴 ∣ ∃ 𝑦𝐵 𝜓 } ∈ Fin )