Description: Membership in a restricted class abstraction after substituting an expression A (containing y ) for x in the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabxfr.1 | |- F/_ y B | |
| rabxfr.2 | |- F/_ y C | ||
| rabxfr.3 | |- ( y e. D -> A e. D ) | ||
| rabxfr.4 | |- ( x = A -> ( ph <-> ps ) ) | ||
| rabxfr.5 | |- ( y = B -> A = C ) | ||
| Assertion | rabxfr | |- ( B e. D -> ( C e. { x e. D | ph } <-> B e. { y e. D | ps } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabxfr.1 | |- F/_ y B | |
| 2 | rabxfr.2 | |- F/_ y C | |
| 3 | rabxfr.3 | |- ( y e. D -> A e. D ) | |
| 4 | rabxfr.4 | |- ( x = A -> ( ph <-> ps ) ) | |
| 5 | rabxfr.5 | |- ( y = B -> A = C ) | |
| 6 | tru | |- T. | |
| 7 | 3 | adantl | |- ( ( T. /\ y e. D ) -> A e. D ) | 
| 8 | 1 2 7 4 5 | rabxfrd |  |-  ( ( T. /\ B e. D ) -> ( C e. { x e. D | ph } <-> B e. { y e. D | ps } ) ) | 
| 9 | 6 8 | mpan |  |-  ( B e. D -> ( C e. { x e. D | ph } <-> B e. { y e. D | ps } ) ) |