Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Introduce the Axiom of Power Sets rabxfr  
				
		 
		
			
		 
		Description:   Membership in a restricted class abstraction after substituting an
       expression A  (containing y  ) for x  in the formula defining
       the class abstraction.  (Contributed by NM , 10-Jun-2005) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						rabxfr.1   ⊢    Ⅎ   _  y  B       
					 
					
						rabxfr.2   ⊢    Ⅎ   _  y  C       
					 
					
						rabxfr.3    ⊢   y  ∈  D    →   A  ∈  D         
					 
					
						rabxfr.4    ⊢   x  =  A    →    φ   ↔   ψ         
					 
					
						rabxfr.5    ⊢   y  =  B    →   A  =  C         
					 
				
					Assertion 
					rabxfr    ⊢   B  ∈  D    →    C  ∈   x  ∈  D  |   φ       ↔   B  ∈   y  ∈  D  |   ψ             
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							rabxfr.1  ⊢    Ⅎ   _  y  B       
						
							2 
								
							 
							rabxfr.2  ⊢    Ⅎ   _  y  C       
						
							3 
								
							 
							rabxfr.3   ⊢   y  ∈  D    →   A  ∈  D         
						
							4 
								
							 
							rabxfr.4   ⊢   x  =  A    →    φ   ↔   ψ         
						
							5 
								
							 
							rabxfr.5   ⊢   y  =  B    →   A  =  C         
						
							6 
								
							 
							tru  ⊢  ⊤     
						
							7 
								3 
							 
							adantl   ⊢   ⊤  ∧   y  ∈  D     →   A  ∈  D         
						
							8 
								1  2  7  4  5 
							 
							rabxfrd   ⊢   ⊤  ∧   B  ∈  D     →    C  ∈   x  ∈  D  |   φ       ↔   B  ∈   y  ∈  D  |   ψ             
						
							9 
								6  8 
							 
							mpan   ⊢   B  ∈  D    →    C  ∈   x  ∈  D  |   φ       ↔   B  ∈   y  ∈  D  |   ψ