| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramval.c |  |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 2 |  | ramval.t |  |-  T = { n e. NN0 | A. s ( n <_ ( # ` s ) -> A. f e. ( R ^m ( s C M ) ) E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) } | 
						
							| 3 | 1 2 | ramcl2lem |  |-  ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) = if ( T = (/) , +oo , inf ( T , RR , < ) ) ) | 
						
							| 4 |  | n0i |  |-  ( A e. T -> -. T = (/) ) | 
						
							| 5 | 4 | iffalsed |  |-  ( A e. T -> if ( T = (/) , +oo , inf ( T , RR , < ) ) = inf ( T , RR , < ) ) | 
						
							| 6 | 3 5 | sylan9eq |  |-  ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ A e. T ) -> ( M Ramsey F ) = inf ( T , RR , < ) ) | 
						
							| 7 | 2 | ssrab3 |  |-  T C_ NN0 | 
						
							| 8 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 9 | 7 8 | sseqtri |  |-  T C_ ( ZZ>= ` 0 ) | 
						
							| 10 | 9 | a1i |  |-  ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> T C_ ( ZZ>= ` 0 ) ) | 
						
							| 11 |  | infssuzle |  |-  ( ( T C_ ( ZZ>= ` 0 ) /\ A e. T ) -> inf ( T , RR , < ) <_ A ) | 
						
							| 12 | 10 11 | sylan |  |-  ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ A e. T ) -> inf ( T , RR , < ) <_ A ) | 
						
							| 13 | 6 12 | eqbrtrd |  |-  ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ A e. T ) -> ( M Ramsey F ) <_ A ) |