Metamath Proof Explorer


Theorem rankwflem

Description: Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of TakeutiZaring p. 78. This variant of tz9.13g is useful in proofs of theorems about the rank function. (Contributed by NM, 4-Oct-2003)

Ref Expression
Assertion rankwflem
|- ( A e. V -> E. x e. On A e. ( R1 ` suc x ) )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. V -> A e. _V )
2 unir1
 |-  U. ( R1 " On ) = _V
3 1 2 eleqtrrdi
 |-  ( A e. V -> A e. U. ( R1 " On ) )
4 rankwflemb
 |-  ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) )
5 3 4 sylib
 |-  ( A e. V -> E. x e. On A e. ( R1 ` suc x ) )