Step |
Hyp |
Ref |
Expression |
1 |
|
tbw-negdf |
|- ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) |
2 |
|
tbw-ax2 |
|- ( ( ( ( ph -> F. ) -> -. ph ) -> F. ) -> ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) ) |
3 |
|
tbwlem4 |
|- ( ( ( ( ( ph -> F. ) -> -. ph ) -> F. ) -> ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) ) -> ( ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) -> ( ( ph -> F. ) -> -. ph ) ) ) |
4 |
2 3
|
ax-mp |
|- ( ( ( ( -. ph -> ( ph -> F. ) ) -> ( ( ( ph -> F. ) -> -. ph ) -> F. ) ) -> F. ) -> ( ( ph -> F. ) -> -. ph ) ) |
5 |
1 4
|
ax-mp |
|- ( ( ph -> F. ) -> -. ph ) |
6 |
|
tbw-ax1 |
|- ( ( ( ph -> F. ) -> -. ph ) -> ( ( -. ph -> ph ) -> ( ( ph -> F. ) -> ph ) ) ) |
7 |
5 6
|
ax-mp |
|- ( ( -. ph -> ph ) -> ( ( ph -> F. ) -> ph ) ) |
8 |
|
tbw-ax3 |
|- ( ( ( ph -> F. ) -> ph ) -> ph ) |
9 |
7 8
|
tbwsyl |
|- ( ( -. ph -> ph ) -> ph ) |