| Step |
Hyp |
Ref |
Expression |
| 1 |
|
readdridaddlidd.a |
|- ( ph -> A e. RR ) |
| 2 |
|
readdridaddlidd.b |
|- ( ph -> B e. RR ) |
| 3 |
|
readdridaddlidd.1 |
|- ( ph -> ( B + A ) = B ) |
| 4 |
2
|
adantr |
|- ( ( ph /\ C e. RR ) -> B e. RR ) |
| 5 |
4
|
recnd |
|- ( ( ph /\ C e. RR ) -> B e. CC ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ C e. RR ) -> A e. RR ) |
| 7 |
6
|
recnd |
|- ( ( ph /\ C e. RR ) -> A e. CC ) |
| 8 |
|
simpr |
|- ( ( ph /\ C e. RR ) -> C e. RR ) |
| 9 |
8
|
recnd |
|- ( ( ph /\ C e. RR ) -> C e. CC ) |
| 10 |
5 7 9
|
addassd |
|- ( ( ph /\ C e. RR ) -> ( ( B + A ) + C ) = ( B + ( A + C ) ) ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ C e. RR ) -> ( B + A ) = B ) |
| 12 |
11
|
oveq1d |
|- ( ( ph /\ C e. RR ) -> ( ( B + A ) + C ) = ( B + C ) ) |
| 13 |
10 12
|
eqtr3d |
|- ( ( ph /\ C e. RR ) -> ( B + ( A + C ) ) = ( B + C ) ) |
| 14 |
6 8
|
readdcld |
|- ( ( ph /\ C e. RR ) -> ( A + C ) e. RR ) |
| 15 |
|
readdcan |
|- ( ( ( A + C ) e. RR /\ C e. RR /\ B e. RR ) -> ( ( B + ( A + C ) ) = ( B + C ) <-> ( A + C ) = C ) ) |
| 16 |
14 8 4 15
|
syl3anc |
|- ( ( ph /\ C e. RR ) -> ( ( B + ( A + C ) ) = ( B + C ) <-> ( A + C ) = C ) ) |
| 17 |
13 16
|
mpbid |
|- ( ( ph /\ C e. RR ) -> ( A + C ) = C ) |