Metamath Proof Explorer


Theorem readdridaddlidd

Description: Given some real number B where A acts like a right additive identity, derive that A is a left additive identity. Note that the hypothesis is weaker than proving that A is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan , A is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023)

Ref Expression
Hypotheses readdridaddlidd.a φA
readdridaddlidd.b φB
readdridaddlidd.1 φB+A=B
Assertion readdridaddlidd φCA+C=C

Proof

Step Hyp Ref Expression
1 readdridaddlidd.a φA
2 readdridaddlidd.b φB
3 readdridaddlidd.1 φB+A=B
4 2 adantr φCB
5 4 recnd φCB
6 1 adantr φCA
7 6 recnd φCA
8 simpr φCC
9 8 recnd φCC
10 5 7 9 addassd φCB+A+C=B+A+C
11 3 adantr φCB+A=B
12 11 oveq1d φCB+A+C=B+C
13 10 12 eqtr3d φCB+A+C=B+C
14 6 8 readdcld φCA+C
15 readdcan A+CCBB+A+C=B+CA+C=C
16 14 8 4 15 syl3anc φCB+A+C=B+CA+C=C
17 13 16 mpbid φCA+C=C