| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recnaddnred.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | recnaddnred.b |  |-  ( ph -> B e. ( CC \ RR ) ) | 
						
							| 3 |  | cndivrenred.n |  |-  ( ph -> A =/= 0 ) | 
						
							| 4 | 2 | eldifbd |  |-  ( ph -> -. B e. RR ) | 
						
							| 5 |  | df-nel |  |-  ( ( A x. B ) e/ RR <-> -. ( A x. B ) e. RR ) | 
						
							| 6 | 2 | eldifad |  |-  ( ph -> B e. CC ) | 
						
							| 7 |  | mulre |  |-  ( ( B e. CC /\ A e. RR /\ A =/= 0 ) -> ( B e. RR <-> ( A x. B ) e. RR ) ) | 
						
							| 8 | 6 1 3 7 | syl3anc |  |-  ( ph -> ( B e. RR <-> ( A x. B ) e. RR ) ) | 
						
							| 9 | 8 | bicomd |  |-  ( ph -> ( ( A x. B ) e. RR <-> B e. RR ) ) | 
						
							| 10 | 9 | notbid |  |-  ( ph -> ( -. ( A x. B ) e. RR <-> -. B e. RR ) ) | 
						
							| 11 | 5 10 | bitrid |  |-  ( ph -> ( ( A x. B ) e/ RR <-> -. B e. RR ) ) | 
						
							| 12 | 4 11 | mpbird |  |-  ( ph -> ( A x. B ) e/ RR ) |