| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recnaddnred.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | recnaddnred.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ℂ  ∖  ℝ ) ) | 
						
							| 3 |  | cndivrenred.n | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 4 | 2 | eldifbd | ⊢ ( 𝜑  →  ¬  𝐵  ∈  ℝ ) | 
						
							| 5 |  | df-nel | ⊢ ( ( 𝐴  ·  𝐵 )  ∉  ℝ  ↔  ¬  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 6 | 2 | eldifad | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | mulre | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 𝐵  ∈  ℝ  ↔  ( 𝐴  ·  𝐵 )  ∈  ℝ ) ) | 
						
							| 8 | 6 1 3 7 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ↔  ( 𝐴  ·  𝐵 )  ∈  ℝ ) ) | 
						
							| 9 | 8 | bicomd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  ∈  ℝ  ↔  𝐵  ∈  ℝ ) ) | 
						
							| 10 | 9 | notbid | ⊢ ( 𝜑  →  ( ¬  ( 𝐴  ·  𝐵 )  ∈  ℝ  ↔  ¬  𝐵  ∈  ℝ ) ) | 
						
							| 11 | 5 10 | bitrid | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  ∉  ℝ  ↔  ¬  𝐵  ∈  ℝ ) ) | 
						
							| 12 | 4 11 | mpbird | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∉  ℝ ) |