| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recnaddnred.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | recnaddnred.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ℂ  ∖  ℝ ) ) | 
						
							| 3 |  | cndivrenred.n | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 4 | 2 | eldifbd | ⊢ ( 𝜑  →  ¬  𝐵  ∈  ℝ ) | 
						
							| 5 |  | df-nel | ⊢ ( ( 𝐵  /  𝐴 )  ∉  ℝ  ↔  ¬  ( 𝐵  /  𝐴 )  ∈  ℝ ) | 
						
							| 6 | 2 | eldifad | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 7 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 6 7 3 | divcld | ⊢ ( 𝜑  →  ( 𝐵  /  𝐴 )  ∈  ℂ ) | 
						
							| 9 |  | reim0b | ⊢ ( ( 𝐵  /  𝐴 )  ∈  ℂ  →  ( ( 𝐵  /  𝐴 )  ∈  ℝ  ↔  ( ℑ ‘ ( 𝐵  /  𝐴 ) )  =  0 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐴 )  ∈  ℝ  ↔  ( ℑ ‘ ( 𝐵  /  𝐴 ) )  =  0 ) ) | 
						
							| 11 | 6 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 13 | 12 7 3 | diveq0ad | ⊢ ( 𝜑  →  ( ( ( ℑ ‘ 𝐵 )  /  𝐴 )  =  0  ↔  ( ℑ ‘ 𝐵 )  =  0 ) ) | 
						
							| 14 | 1 6 3 | imdivd | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐵  /  𝐴 ) )  =  ( ( ℑ ‘ 𝐵 )  /  𝐴 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  =  0  ↔  ( ( ℑ ‘ 𝐵 )  /  𝐴 )  =  0 ) ) | 
						
							| 16 |  | reim0b | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  ∈  ℝ  ↔  ( ℑ ‘ 𝐵 )  =  0 ) ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ↔  ( ℑ ‘ 𝐵 )  =  0 ) ) | 
						
							| 18 | 13 15 17 | 3bitr4d | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  =  0  ↔  𝐵  ∈  ℝ ) ) | 
						
							| 19 | 10 18 | bitrd | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐴 )  ∈  ℝ  ↔  𝐵  ∈  ℝ ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( 𝜑  →  ( ¬  ( 𝐵  /  𝐴 )  ∈  ℝ  ↔  ¬  𝐵  ∈  ℝ ) ) | 
						
							| 21 | 5 20 | bitrid | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐴 )  ∉  ℝ  ↔  ¬  𝐵  ∈  ℝ ) ) | 
						
							| 22 | 4 21 | mpbird | ⊢ ( 𝜑  →  ( 𝐵  /  𝐴 )  ∉  ℝ ) |