| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn | ⊢ ( 𝑋  ∈  ℝ  →  𝑋  ∈  ℂ ) | 
						
							| 2 | 1 | negnegd | ⊢ ( 𝑋  ∈  ℝ  →  - - 𝑋  =  𝑋 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  - - 𝑋  =  𝑋 ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  𝑋  =  - - 𝑋 ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( √ ‘ 𝑋 )  =  ( √ ‘ - - 𝑋 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  𝑋  ∈  ℝ ) | 
						
							| 7 | 6 | renegcld | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  - 𝑋  ∈  ℝ ) | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | ltle | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝑋  <  0  →  𝑋  ≤  0 ) ) | 
						
							| 10 | 8 9 | mpan2 | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  <  0  →  𝑋  ≤  0 ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  𝑋  ≤  0 ) | 
						
							| 12 |  | le0neg1 | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  ≤  0  ↔  0  ≤  - 𝑋 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( 𝑋  ≤  0  ↔  0  ≤  - 𝑋 ) ) | 
						
							| 14 | 11 13 | mpbid | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  0  ≤  - 𝑋 ) | 
						
							| 15 | 7 14 | sqrtnegd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( √ ‘ - - 𝑋 )  =  ( i  ·  ( √ ‘ - 𝑋 ) ) ) | 
						
							| 16 | 5 15 | eqtrd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( √ ‘ 𝑋 )  =  ( i  ·  ( √ ‘ - 𝑋 ) ) ) | 
						
							| 17 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  i  ∈  ℂ ) | 
						
							| 19 | 1 | adantr | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  𝑋  ∈  ℂ ) | 
						
							| 20 | 19 | negcld | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  - 𝑋  ∈  ℂ ) | 
						
							| 21 | 20 | sqrtcld | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( √ ‘ - 𝑋 )  ∈  ℂ ) | 
						
							| 22 | 18 21 | mulcomd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( i  ·  ( √ ‘ - 𝑋 ) )  =  ( ( √ ‘ - 𝑋 )  ·  i ) ) | 
						
							| 23 | 7 14 | resqrtcld | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( √ ‘ - 𝑋 )  ∈  ℝ ) | 
						
							| 24 |  | inelr | ⊢ ¬  i  ∈  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ¬  i  ∈  ℝ ) | 
						
							| 26 | 18 25 | eldifd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  i  ∈  ( ℂ  ∖  ℝ ) ) | 
						
							| 27 |  | lt0neg1 | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  <  0  ↔  0  <  - 𝑋 ) ) | 
						
							| 28 | 8 | a1i | ⊢ ( 𝑋  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 29 |  | ltne | ⊢ ( ( 0  ∈  ℝ  ∧  0  <  - 𝑋 )  →  - 𝑋  ≠  0 ) | 
						
							| 30 | 28 29 | sylan | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  <  - 𝑋 )  →  - 𝑋  ≠  0 ) | 
						
							| 31 |  | simpl | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  <  - 𝑋 )  →  𝑋  ∈  ℝ ) | 
						
							| 32 | 31 | renegcld | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  <  - 𝑋 )  →  - 𝑋  ∈  ℝ ) | 
						
							| 33 | 10 27 12 | 3imtr3d | ⊢ ( 𝑋  ∈  ℝ  →  ( 0  <  - 𝑋  →  0  ≤  - 𝑋 ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  <  - 𝑋 )  →  0  ≤  - 𝑋 ) | 
						
							| 35 |  | sqrt00 | ⊢ ( ( - 𝑋  ∈  ℝ  ∧  0  ≤  - 𝑋 )  →  ( ( √ ‘ - 𝑋 )  =  0  ↔  - 𝑋  =  0 ) ) | 
						
							| 36 | 32 34 35 | syl2anc | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  <  - 𝑋 )  →  ( ( √ ‘ - 𝑋 )  =  0  ↔  - 𝑋  =  0 ) ) | 
						
							| 37 | 36 | bicomd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  <  - 𝑋 )  →  ( - 𝑋  =  0  ↔  ( √ ‘ - 𝑋 )  =  0 ) ) | 
						
							| 38 | 37 | necon3bid | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  <  - 𝑋 )  →  ( - 𝑋  ≠  0  ↔  ( √ ‘ - 𝑋 )  ≠  0 ) ) | 
						
							| 39 | 30 38 | mpbid | ⊢ ( ( 𝑋  ∈  ℝ  ∧  0  <  - 𝑋 )  →  ( √ ‘ - 𝑋 )  ≠  0 ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝑋  ∈  ℝ  →  ( 0  <  - 𝑋  →  ( √ ‘ - 𝑋 )  ≠  0 ) ) | 
						
							| 41 | 27 40 | sylbid | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  <  0  →  ( √ ‘ - 𝑋 )  ≠  0 ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( √ ‘ - 𝑋 )  ≠  0 ) | 
						
							| 43 | 23 26 42 | recnmulnred | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( ( √ ‘ - 𝑋 )  ·  i )  ∉  ℝ ) | 
						
							| 44 |  | df-nel | ⊢ ( ( ( √ ‘ - 𝑋 )  ·  i )  ∉  ℝ  ↔  ¬  ( ( √ ‘ - 𝑋 )  ·  i )  ∈  ℝ ) | 
						
							| 45 | 43 44 | sylib | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ¬  ( ( √ ‘ - 𝑋 )  ·  i )  ∈  ℝ ) | 
						
							| 46 | 22 45 | eqneltrd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ¬  ( i  ·  ( √ ‘ - 𝑋 ) )  ∈  ℝ ) | 
						
							| 47 | 16 46 | eqneltrd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ¬  ( √ ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 48 |  | df-nel | ⊢ ( ( √ ‘ 𝑋 )  ∉  ℝ  ↔  ¬  ( √ ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 49 | 47 48 | sylibr | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑋  <  0 )  →  ( √ ‘ 𝑋 )  ∉  ℝ ) |