| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( X e. RR -> X e. CC ) | 
						
							| 2 | 1 | negnegd |  |-  ( X e. RR -> -u -u X = X ) | 
						
							| 3 | 2 | adantr |  |-  ( ( X e. RR /\ X < 0 ) -> -u -u X = X ) | 
						
							| 4 | 3 | eqcomd |  |-  ( ( X e. RR /\ X < 0 ) -> X = -u -u X ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( X e. RR /\ X < 0 ) -> ( sqrt ` X ) = ( sqrt ` -u -u X ) ) | 
						
							| 6 |  | simpl |  |-  ( ( X e. RR /\ X < 0 ) -> X e. RR ) | 
						
							| 7 | 6 | renegcld |  |-  ( ( X e. RR /\ X < 0 ) -> -u X e. RR ) | 
						
							| 8 |  | 0re |  |-  0 e. RR | 
						
							| 9 |  | ltle |  |-  ( ( X e. RR /\ 0 e. RR ) -> ( X < 0 -> X <_ 0 ) ) | 
						
							| 10 | 8 9 | mpan2 |  |-  ( X e. RR -> ( X < 0 -> X <_ 0 ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( X e. RR /\ X < 0 ) -> X <_ 0 ) | 
						
							| 12 |  | le0neg1 |  |-  ( X e. RR -> ( X <_ 0 <-> 0 <_ -u X ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( X e. RR /\ X < 0 ) -> ( X <_ 0 <-> 0 <_ -u X ) ) | 
						
							| 14 | 11 13 | mpbid |  |-  ( ( X e. RR /\ X < 0 ) -> 0 <_ -u X ) | 
						
							| 15 | 7 14 | sqrtnegd |  |-  ( ( X e. RR /\ X < 0 ) -> ( sqrt ` -u -u X ) = ( _i x. ( sqrt ` -u X ) ) ) | 
						
							| 16 | 5 15 | eqtrd |  |-  ( ( X e. RR /\ X < 0 ) -> ( sqrt ` X ) = ( _i x. ( sqrt ` -u X ) ) ) | 
						
							| 17 |  | ax-icn |  |-  _i e. CC | 
						
							| 18 | 17 | a1i |  |-  ( ( X e. RR /\ X < 0 ) -> _i e. CC ) | 
						
							| 19 | 1 | adantr |  |-  ( ( X e. RR /\ X < 0 ) -> X e. CC ) | 
						
							| 20 | 19 | negcld |  |-  ( ( X e. RR /\ X < 0 ) -> -u X e. CC ) | 
						
							| 21 | 20 | sqrtcld |  |-  ( ( X e. RR /\ X < 0 ) -> ( sqrt ` -u X ) e. CC ) | 
						
							| 22 | 18 21 | mulcomd |  |-  ( ( X e. RR /\ X < 0 ) -> ( _i x. ( sqrt ` -u X ) ) = ( ( sqrt ` -u X ) x. _i ) ) | 
						
							| 23 | 7 14 | resqrtcld |  |-  ( ( X e. RR /\ X < 0 ) -> ( sqrt ` -u X ) e. RR ) | 
						
							| 24 |  | inelr |  |-  -. _i e. RR | 
						
							| 25 | 24 | a1i |  |-  ( ( X e. RR /\ X < 0 ) -> -. _i e. RR ) | 
						
							| 26 | 18 25 | eldifd |  |-  ( ( X e. RR /\ X < 0 ) -> _i e. ( CC \ RR ) ) | 
						
							| 27 |  | lt0neg1 |  |-  ( X e. RR -> ( X < 0 <-> 0 < -u X ) ) | 
						
							| 28 | 8 | a1i |  |-  ( X e. RR -> 0 e. RR ) | 
						
							| 29 |  | ltne |  |-  ( ( 0 e. RR /\ 0 < -u X ) -> -u X =/= 0 ) | 
						
							| 30 | 28 29 | sylan |  |-  ( ( X e. RR /\ 0 < -u X ) -> -u X =/= 0 ) | 
						
							| 31 |  | simpl |  |-  ( ( X e. RR /\ 0 < -u X ) -> X e. RR ) | 
						
							| 32 | 31 | renegcld |  |-  ( ( X e. RR /\ 0 < -u X ) -> -u X e. RR ) | 
						
							| 33 | 10 27 12 | 3imtr3d |  |-  ( X e. RR -> ( 0 < -u X -> 0 <_ -u X ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( X e. RR /\ 0 < -u X ) -> 0 <_ -u X ) | 
						
							| 35 |  | sqrt00 |  |-  ( ( -u X e. RR /\ 0 <_ -u X ) -> ( ( sqrt ` -u X ) = 0 <-> -u X = 0 ) ) | 
						
							| 36 | 32 34 35 | syl2anc |  |-  ( ( X e. RR /\ 0 < -u X ) -> ( ( sqrt ` -u X ) = 0 <-> -u X = 0 ) ) | 
						
							| 37 | 36 | bicomd |  |-  ( ( X e. RR /\ 0 < -u X ) -> ( -u X = 0 <-> ( sqrt ` -u X ) = 0 ) ) | 
						
							| 38 | 37 | necon3bid |  |-  ( ( X e. RR /\ 0 < -u X ) -> ( -u X =/= 0 <-> ( sqrt ` -u X ) =/= 0 ) ) | 
						
							| 39 | 30 38 | mpbid |  |-  ( ( X e. RR /\ 0 < -u X ) -> ( sqrt ` -u X ) =/= 0 ) | 
						
							| 40 | 39 | ex |  |-  ( X e. RR -> ( 0 < -u X -> ( sqrt ` -u X ) =/= 0 ) ) | 
						
							| 41 | 27 40 | sylbid |  |-  ( X e. RR -> ( X < 0 -> ( sqrt ` -u X ) =/= 0 ) ) | 
						
							| 42 | 41 | imp |  |-  ( ( X e. RR /\ X < 0 ) -> ( sqrt ` -u X ) =/= 0 ) | 
						
							| 43 | 23 26 42 | recnmulnred |  |-  ( ( X e. RR /\ X < 0 ) -> ( ( sqrt ` -u X ) x. _i ) e/ RR ) | 
						
							| 44 |  | df-nel |  |-  ( ( ( sqrt ` -u X ) x. _i ) e/ RR <-> -. ( ( sqrt ` -u X ) x. _i ) e. RR ) | 
						
							| 45 | 43 44 | sylib |  |-  ( ( X e. RR /\ X < 0 ) -> -. ( ( sqrt ` -u X ) x. _i ) e. RR ) | 
						
							| 46 | 22 45 | eqneltrd |  |-  ( ( X e. RR /\ X < 0 ) -> -. ( _i x. ( sqrt ` -u X ) ) e. RR ) | 
						
							| 47 | 16 46 | eqneltrd |  |-  ( ( X e. RR /\ X < 0 ) -> -. ( sqrt ` X ) e. RR ) | 
						
							| 48 |  | df-nel |  |-  ( ( sqrt ` X ) e/ RR <-> -. ( sqrt ` X ) e. RR ) | 
						
							| 49 | 47 48 | sylibr |  |-  ( ( X e. RR /\ X < 0 ) -> ( sqrt ` X ) e/ RR ) |