Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( X e. RR -> X e. CC ) |
2 |
1
|
negnegd |
|- ( X e. RR -> -u -u X = X ) |
3 |
2
|
adantr |
|- ( ( X e. RR /\ X < 0 ) -> -u -u X = X ) |
4 |
3
|
eqcomd |
|- ( ( X e. RR /\ X < 0 ) -> X = -u -u X ) |
5 |
4
|
fveq2d |
|- ( ( X e. RR /\ X < 0 ) -> ( sqrt ` X ) = ( sqrt ` -u -u X ) ) |
6 |
|
simpl |
|- ( ( X e. RR /\ X < 0 ) -> X e. RR ) |
7 |
6
|
renegcld |
|- ( ( X e. RR /\ X < 0 ) -> -u X e. RR ) |
8 |
|
0re |
|- 0 e. RR |
9 |
|
ltle |
|- ( ( X e. RR /\ 0 e. RR ) -> ( X < 0 -> X <_ 0 ) ) |
10 |
8 9
|
mpan2 |
|- ( X e. RR -> ( X < 0 -> X <_ 0 ) ) |
11 |
10
|
imp |
|- ( ( X e. RR /\ X < 0 ) -> X <_ 0 ) |
12 |
|
le0neg1 |
|- ( X e. RR -> ( X <_ 0 <-> 0 <_ -u X ) ) |
13 |
12
|
adantr |
|- ( ( X e. RR /\ X < 0 ) -> ( X <_ 0 <-> 0 <_ -u X ) ) |
14 |
11 13
|
mpbid |
|- ( ( X e. RR /\ X < 0 ) -> 0 <_ -u X ) |
15 |
7 14
|
sqrtnegd |
|- ( ( X e. RR /\ X < 0 ) -> ( sqrt ` -u -u X ) = ( _i x. ( sqrt ` -u X ) ) ) |
16 |
5 15
|
eqtrd |
|- ( ( X e. RR /\ X < 0 ) -> ( sqrt ` X ) = ( _i x. ( sqrt ` -u X ) ) ) |
17 |
|
ax-icn |
|- _i e. CC |
18 |
17
|
a1i |
|- ( ( X e. RR /\ X < 0 ) -> _i e. CC ) |
19 |
1
|
adantr |
|- ( ( X e. RR /\ X < 0 ) -> X e. CC ) |
20 |
19
|
negcld |
|- ( ( X e. RR /\ X < 0 ) -> -u X e. CC ) |
21 |
20
|
sqrtcld |
|- ( ( X e. RR /\ X < 0 ) -> ( sqrt ` -u X ) e. CC ) |
22 |
18 21
|
mulcomd |
|- ( ( X e. RR /\ X < 0 ) -> ( _i x. ( sqrt ` -u X ) ) = ( ( sqrt ` -u X ) x. _i ) ) |
23 |
7 14
|
resqrtcld |
|- ( ( X e. RR /\ X < 0 ) -> ( sqrt ` -u X ) e. RR ) |
24 |
|
inelr |
|- -. _i e. RR |
25 |
24
|
a1i |
|- ( ( X e. RR /\ X < 0 ) -> -. _i e. RR ) |
26 |
18 25
|
eldifd |
|- ( ( X e. RR /\ X < 0 ) -> _i e. ( CC \ RR ) ) |
27 |
|
lt0neg1 |
|- ( X e. RR -> ( X < 0 <-> 0 < -u X ) ) |
28 |
8
|
a1i |
|- ( X e. RR -> 0 e. RR ) |
29 |
|
ltne |
|- ( ( 0 e. RR /\ 0 < -u X ) -> -u X =/= 0 ) |
30 |
28 29
|
sylan |
|- ( ( X e. RR /\ 0 < -u X ) -> -u X =/= 0 ) |
31 |
|
simpl |
|- ( ( X e. RR /\ 0 < -u X ) -> X e. RR ) |
32 |
31
|
renegcld |
|- ( ( X e. RR /\ 0 < -u X ) -> -u X e. RR ) |
33 |
10 27 12
|
3imtr3d |
|- ( X e. RR -> ( 0 < -u X -> 0 <_ -u X ) ) |
34 |
33
|
imp |
|- ( ( X e. RR /\ 0 < -u X ) -> 0 <_ -u X ) |
35 |
|
sqrt00 |
|- ( ( -u X e. RR /\ 0 <_ -u X ) -> ( ( sqrt ` -u X ) = 0 <-> -u X = 0 ) ) |
36 |
32 34 35
|
syl2anc |
|- ( ( X e. RR /\ 0 < -u X ) -> ( ( sqrt ` -u X ) = 0 <-> -u X = 0 ) ) |
37 |
36
|
bicomd |
|- ( ( X e. RR /\ 0 < -u X ) -> ( -u X = 0 <-> ( sqrt ` -u X ) = 0 ) ) |
38 |
37
|
necon3bid |
|- ( ( X e. RR /\ 0 < -u X ) -> ( -u X =/= 0 <-> ( sqrt ` -u X ) =/= 0 ) ) |
39 |
30 38
|
mpbid |
|- ( ( X e. RR /\ 0 < -u X ) -> ( sqrt ` -u X ) =/= 0 ) |
40 |
39
|
ex |
|- ( X e. RR -> ( 0 < -u X -> ( sqrt ` -u X ) =/= 0 ) ) |
41 |
27 40
|
sylbid |
|- ( X e. RR -> ( X < 0 -> ( sqrt ` -u X ) =/= 0 ) ) |
42 |
41
|
imp |
|- ( ( X e. RR /\ X < 0 ) -> ( sqrt ` -u X ) =/= 0 ) |
43 |
23 26 42
|
recnmulnred |
|- ( ( X e. RR /\ X < 0 ) -> ( ( sqrt ` -u X ) x. _i ) e/ RR ) |
44 |
|
df-nel |
|- ( ( ( sqrt ` -u X ) x. _i ) e/ RR <-> -. ( ( sqrt ` -u X ) x. _i ) e. RR ) |
45 |
43 44
|
sylib |
|- ( ( X e. RR /\ X < 0 ) -> -. ( ( sqrt ` -u X ) x. _i ) e. RR ) |
46 |
22 45
|
eqneltrd |
|- ( ( X e. RR /\ X < 0 ) -> -. ( _i x. ( sqrt ` -u X ) ) e. RR ) |
47 |
16 46
|
eqneltrd |
|- ( ( X e. RR /\ X < 0 ) -> -. ( sqrt ` X ) e. RR ) |
48 |
|
df-nel |
|- ( ( sqrt ` X ) e/ RR <-> -. ( sqrt ` X ) e. RR ) |
49 |
47 48
|
sylibr |
|- ( ( X e. RR /\ X < 0 ) -> ( sqrt ` X ) e/ RR ) |