Metamath Proof Explorer


Theorem cndivrenred

Description: The quotient of an imaginary number and a real number is not a real number. (Contributed by AV, 23-Jan-2023)

Ref Expression
Hypotheses recnaddnred.a φ A
recnaddnred.b φ B
cndivrenred.n φ A 0
Assertion cndivrenred φ B A

Proof

Step Hyp Ref Expression
1 recnaddnred.a φ A
2 recnaddnred.b φ B
3 cndivrenred.n φ A 0
4 2 eldifbd φ ¬ B
5 df-nel B A ¬ B A
6 2 eldifad φ B
7 1 recnd φ A
8 6 7 3 divcld φ B A
9 reim0b B A B A B A = 0
10 8 9 syl φ B A B A = 0
11 6 imcld φ B
12 11 recnd φ B
13 12 7 3 diveq0ad φ B A = 0 B = 0
14 1 6 3 imdivd φ B A = B A
15 14 eqeq1d φ B A = 0 B A = 0
16 reim0b B B B = 0
17 6 16 syl φ B B = 0
18 13 15 17 3bitr4d φ B A = 0 B
19 10 18 bitrd φ B A B
20 19 notbid φ ¬ B A ¬ B
21 5 20 syl5bb φ B A ¬ B
22 4 21 mpbird φ B A