Metamath Proof Explorer


Theorem redivclzi

Description: Closure law for division of reals. (Contributed by NM, 9-May-1999)

Ref Expression
Hypotheses redivcl.1
|- A e. RR
redivcl.2
|- B e. RR
Assertion redivclzi
|- ( B =/= 0 -> ( A / B ) e. RR )

Proof

Step Hyp Ref Expression
1 redivcl.1
 |-  A e. RR
2 redivcl.2
 |-  B e. RR
3 redivcl
 |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR )
4 1 2 3 mp3an12
 |-  ( B =/= 0 -> ( A / B ) e. RR )