Description: Closure law for division of reals. (Contributed by NM, 9-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | redivcl.1 | |- A e. RR |
|
redivcl.2 | |- B e. RR |
||
Assertion | redivclzi | |- ( B =/= 0 -> ( A / B ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivcl.1 | |- A e. RR |
|
2 | redivcl.2 | |- B e. RR |
|
3 | redivcl | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) |
|
4 | 1 2 3 | mp3an12 | |- ( B =/= 0 -> ( A / B ) e. RR ) |