Metamath Proof Explorer


Theorem redivclzi

Description: Closure law for division of reals. (Contributed by NM, 9-May-1999)

Ref Expression
Hypotheses redivcl.1 A
redivcl.2 B
Assertion redivclzi B0AB

Proof

Step Hyp Ref Expression
1 redivcl.1 A
2 redivcl.2 B
3 redivcl ABB0AB
4 1 2 3 mp3an12 B0AB