Description: A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexp2 | |- ( R e. V -> ( R ^r 2 ) = ( R o. R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 | |- 2 = ( 1 + 1 ) |
|
2 | 1 | oveq2i | |- ( R ^r 2 ) = ( R ^r ( 1 + 1 ) ) |
3 | 2 | a1i | |- ( R e. V -> ( R ^r 2 ) = ( R ^r ( 1 + 1 ) ) ) |
4 | 1nn | |- 1 e. NN |
|
5 | relexpsucnnr | |- ( ( R e. V /\ 1 e. NN ) -> ( R ^r ( 1 + 1 ) ) = ( ( R ^r 1 ) o. R ) ) |
|
6 | 4 5 | mpan2 | |- ( R e. V -> ( R ^r ( 1 + 1 ) ) = ( ( R ^r 1 ) o. R ) ) |
7 | relexp1g | |- ( R e. V -> ( R ^r 1 ) = R ) |
|
8 | 7 | coeq1d | |- ( R e. V -> ( ( R ^r 1 ) o. R ) = ( R o. R ) ) |
9 | 3 6 8 | 3eqtrd | |- ( R e. V -> ( R ^r 2 ) = ( R o. R ) ) |