Description: A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relexp2 | |- ( R e. V -> ( R ^r 2 ) = ( R o. R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-2 | |- 2 = ( 1 + 1 ) | |
| 2 | 1 | oveq2i | |- ( R ^r 2 ) = ( R ^r ( 1 + 1 ) ) | 
| 3 | 2 | a1i | |- ( R e. V -> ( R ^r 2 ) = ( R ^r ( 1 + 1 ) ) ) | 
| 4 | 1nn | |- 1 e. NN | |
| 5 | relexpsucnnr | |- ( ( R e. V /\ 1 e. NN ) -> ( R ^r ( 1 + 1 ) ) = ( ( R ^r 1 ) o. R ) ) | |
| 6 | 4 5 | mpan2 | |- ( R e. V -> ( R ^r ( 1 + 1 ) ) = ( ( R ^r 1 ) o. R ) ) | 
| 7 | relexp1g | |- ( R e. V -> ( R ^r 1 ) = R ) | |
| 8 | 7 | coeq1d | |- ( R e. V -> ( ( R ^r 1 ) o. R ) = ( R o. R ) ) | 
| 9 | 3 6 8 | 3eqtrd | |- ( R e. V -> ( R ^r 2 ) = ( R o. R ) ) |