Metamath Proof Explorer


Theorem relexp2

Description: A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020)

Ref Expression
Assertion relexp2
|- ( R e. V -> ( R ^r 2 ) = ( R o. R ) )

Proof

Step Hyp Ref Expression
1 df-2
 |-  2 = ( 1 + 1 )
2 1 oveq2i
 |-  ( R ^r 2 ) = ( R ^r ( 1 + 1 ) )
3 2 a1i
 |-  ( R e. V -> ( R ^r 2 ) = ( R ^r ( 1 + 1 ) ) )
4 1nn
 |-  1 e. NN
5 relexpsucnnr
 |-  ( ( R e. V /\ 1 e. NN ) -> ( R ^r ( 1 + 1 ) ) = ( ( R ^r 1 ) o. R ) )
6 4 5 mpan2
 |-  ( R e. V -> ( R ^r ( 1 + 1 ) ) = ( ( R ^r 1 ) o. R ) )
7 relexp1g
 |-  ( R e. V -> ( R ^r 1 ) = R )
8 7 coeq1d
 |-  ( R e. V -> ( ( R ^r 1 ) o. R ) = ( R o. R ) )
9 3 6 8 3eqtrd
 |-  ( R e. V -> ( R ^r 2 ) = ( R o. R ) )