Description: A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexp2 | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 2 ) = ( 𝑅 ∘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
2 | 1 | oveq2i | ⊢ ( 𝑅 ↑𝑟 2 ) = ( 𝑅 ↑𝑟 ( 1 + 1 ) ) |
3 | 2 | a1i | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 2 ) = ( 𝑅 ↑𝑟 ( 1 + 1 ) ) ) |
4 | 1nn | ⊢ 1 ∈ ℕ | |
5 | relexpsucnnr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 1 ∈ ℕ ) → ( 𝑅 ↑𝑟 ( 1 + 1 ) ) = ( ( 𝑅 ↑𝑟 1 ) ∘ 𝑅 ) ) | |
6 | 4 5 | mpan2 | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 ( 1 + 1 ) ) = ( ( 𝑅 ↑𝑟 1 ) ∘ 𝑅 ) ) |
7 | relexp1g | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 1 ) = 𝑅 ) | |
8 | 7 | coeq1d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ↑𝑟 1 ) ∘ 𝑅 ) = ( 𝑅 ∘ 𝑅 ) ) |
9 | 3 6 8 | 3eqtrd | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ↑𝑟 2 ) = ( 𝑅 ∘ 𝑅 ) ) |