Metamath Proof Explorer


Theorem relexpnul

Description: If the domain and range of powers of a relation are disjoint then the relation raised to the sum of those exponents is empty. (Contributed by RP, 1-Jun-2020)

Ref Expression
Assertion relexpnul ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → ( ( dom ( 𝑅𝑟 𝑁 ) ∩ ran ( 𝑅𝑟 𝑀 ) ) = ∅ ↔ ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 coeq0 ( ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ∅ ↔ ( dom ( 𝑅𝑟 𝑁 ) ∩ ran ( 𝑅𝑟 𝑀 ) ) = ∅ )
2 simprl ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → 𝑁 ∈ ℕ0 )
3 simprr ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → 𝑀 ∈ ℕ0 )
4 simpll ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → 𝑅𝑉 )
5 simplr ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → Rel 𝑅 )
6 5 a1d ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) )
7 relexpaddg ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑀 ∈ ℕ0𝑅𝑉 ∧ ( ( 𝑁 + 𝑀 ) = 1 → Rel 𝑅 ) ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
8 2 3 4 6 7 syl13anc ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) )
9 8 eqeq1d ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → ( ( ( 𝑅𝑟 𝑁 ) ∘ ( 𝑅𝑟 𝑀 ) ) = ∅ ↔ ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ∅ ) )
10 1 9 bitr3id ( ( ( 𝑅𝑉 ∧ Rel 𝑅 ) ∧ ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ0 ) ) → ( ( dom ( 𝑅𝑟 𝑁 ) ∩ ran ( 𝑅𝑟 𝑀 ) ) = ∅ ↔ ( 𝑅𝑟 ( 𝑁 + 𝑀 ) ) = ∅ ) )