| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coeq0 |
|- ( ( ( R ^r N ) o. ( R ^r M ) ) = (/) <-> ( dom ( R ^r N ) i^i ran ( R ^r M ) ) = (/) ) |
| 2 |
|
simplr |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> Rel R ) |
| 3 |
|
simprl |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> N e. NN0 ) |
| 4 |
|
simprr |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> M e. NN0 ) |
| 5 |
2 3 4
|
relexpaddd |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
| 6 |
5
|
eqeq1d |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( ( R ^r N ) o. ( R ^r M ) ) = (/) <-> ( R ^r ( N + M ) ) = (/) ) ) |
| 7 |
1 6
|
bitr3id |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( dom ( R ^r N ) i^i ran ( R ^r M ) ) = (/) <-> ( R ^r ( N + M ) ) = (/) ) ) |