Step |
Hyp |
Ref |
Expression |
1 |
|
coeq0 |
|- ( ( ( R ^r N ) o. ( R ^r M ) ) = (/) <-> ( dom ( R ^r N ) i^i ran ( R ^r M ) ) = (/) ) |
2 |
|
simprl |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> N e. NN0 ) |
3 |
|
simprr |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> M e. NN0 ) |
4 |
|
simpll |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> R e. V ) |
5 |
|
simplr |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> Rel R ) |
6 |
5
|
a1d |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( N + M ) = 1 -> Rel R ) ) |
7 |
|
relexpaddg |
|- ( ( N e. NN0 /\ ( M e. NN0 /\ R e. V /\ ( ( N + M ) = 1 -> Rel R ) ) ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
8 |
2 3 4 6 7
|
syl13anc |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) |
9 |
8
|
eqeq1d |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( ( R ^r N ) o. ( R ^r M ) ) = (/) <-> ( R ^r ( N + M ) ) = (/) ) ) |
10 |
1 9
|
bitr3id |
|- ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( dom ( R ^r N ) i^i ran ( R ^r M ) ) = (/) <-> ( R ^r ( N + M ) ) = (/) ) ) |