| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coeq0 |  |-  ( ( ( R ^r N ) o. ( R ^r M ) ) = (/) <-> ( dom ( R ^r N ) i^i ran ( R ^r M ) ) = (/) ) | 
						
							| 2 |  | simplr |  |-  ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> Rel R ) | 
						
							| 3 |  | simprl |  |-  ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> N e. NN0 ) | 
						
							| 4 |  | simprr |  |-  ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> M e. NN0 ) | 
						
							| 5 | 2 3 4 | relexpaddd |  |-  ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( R ^r N ) o. ( R ^r M ) ) = ( R ^r ( N + M ) ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( ( R ^r N ) o. ( R ^r M ) ) = (/) <-> ( R ^r ( N + M ) ) = (/) ) ) | 
						
							| 7 | 1 6 | bitr3id |  |-  ( ( ( R e. V /\ Rel R ) /\ ( N e. NN0 /\ M e. NN0 ) ) -> ( ( dom ( R ^r N ) i^i ran ( R ^r M ) ) = (/) <-> ( R ^r ( N + M ) ) = (/) ) ) |