Metamath Proof Explorer


Theorem relfae

Description: The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Assertion relfae
|- ( ( R e. _V /\ M e. U. ran measures ) -> Rel ( R ~ae M ) )

Proof

Step Hyp Ref Expression
1 relopabv
 |-  Rel { <. f , g >. | ( ( f e. ( dom R ^m U. dom M ) /\ g e. ( dom R ^m U. dom M ) ) /\ { x e. U. dom M | ( f ` x ) R ( g ` x ) } ae M ) }
2 faeval
 |-  ( ( R e. _V /\ M e. U. ran measures ) -> ( R ~ae M ) = { <. f , g >. | ( ( f e. ( dom R ^m U. dom M ) /\ g e. ( dom R ^m U. dom M ) ) /\ { x e. U. dom M | ( f ` x ) R ( g ` x ) } ae M ) } )
3 2 releqd
 |-  ( ( R e. _V /\ M e. U. ran measures ) -> ( Rel ( R ~ae M ) <-> Rel { <. f , g >. | ( ( f e. ( dom R ^m U. dom M ) /\ g e. ( dom R ^m U. dom M ) ) /\ { x e. U. dom M | ( f ` x ) R ( g ` x ) } ae M ) } ) )
4 1 3 mpbiri
 |-  ( ( R e. _V /\ M e. U. ran measures ) -> Rel ( R ~ae M ) )