Metamath Proof Explorer


Theorem relfae

Description: The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Assertion relfae R V M ran measures Rel R ~ae M

Proof

Step Hyp Ref Expression
1 relopabv Rel f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae.
2 faeval R V M ran measures R ~ae M = f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae.
3 2 releqd R V M ran measures Rel R ~ae M Rel f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae.
4 1 3 mpbiri R V M ran measures Rel R ~ae M