Metamath Proof Explorer


Theorem relfae

Description: The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Assertion relfae RVMranmeasuresRelR~aeM

Proof

Step Hyp Ref Expression
1 relopabv Relfg|fdomRdomMgdomRdomMxdomM|fxRgxM-ae.
2 faeval RVMranmeasuresR~aeM=fg|fdomRdomMgdomRdomMxdomM|fxRgxM-ae.
3 2 releqd RVMranmeasuresRelR~aeMRelfg|fdomRdomMgdomRdomMxdomM|fxRgxM-ae.
4 1 3 mpbiri RVMranmeasuresRelR~aeM