Metamath Proof Explorer


Theorem brfae

Description: 'almost everywhere' relation for two functions F and G with regard to the measure M . (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses brfae.0 dom R = D
brfae.1 φ R V
brfae.2 φ M ran measures
brfae.3 φ F D dom M
brfae.4 φ G D dom M
Assertion brfae φ F R G M-ae. x dom M | F x R G x M-ae.

Proof

Step Hyp Ref Expression
1 brfae.0 dom R = D
2 brfae.1 φ R V
3 brfae.2 φ M ran measures
4 brfae.3 φ F D dom M
5 brfae.4 φ G D dom M
6 simpl f = F g = G f = F
7 6 eleq1d f = F g = G f dom R dom M F dom R dom M
8 simpr f = F g = G g = G
9 8 eleq1d f = F g = G g dom R dom M G dom R dom M
10 7 9 anbi12d f = F g = G f dom R dom M g dom R dom M F dom R dom M G dom R dom M
11 6 fveq1d f = F g = G f x = F x
12 8 fveq1d f = F g = G g x = G x
13 11 12 breq12d f = F g = G f x R g x F x R G x
14 13 rabbidv f = F g = G x dom M | f x R g x = x dom M | F x R G x
15 14 breq1d f = F g = G x dom M | f x R g x M-ae. x dom M | F x R G x M-ae.
16 10 15 anbi12d f = F g = G f dom R dom M g dom R dom M x dom M | f x R g x M-ae. F dom R dom M G dom R dom M x dom M | F x R G x M-ae.
17 eqid f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae. = f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae.
18 16 17 brabga F D dom M G D dom M F f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae. G F dom R dom M G dom R dom M x dom M | F x R G x M-ae.
19 4 5 18 syl2anc φ F f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae. G F dom R dom M G dom R dom M x dom M | F x R G x M-ae.
20 faeval R V M ran measures R ~ae M = f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae.
21 2 3 20 syl2anc φ R ~ae M = f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae.
22 21 breqd φ F R G M-ae. F f g | f dom R dom M g dom R dom M x dom M | f x R g x M-ae. G
23 1 oveq1i dom R dom M = D dom M
24 4 23 eleqtrrdi φ F dom R dom M
25 5 23 eleqtrrdi φ G dom R dom M
26 24 25 jca φ F dom R dom M G dom R dom M
27 26 biantrurd φ x dom M | F x R G x M-ae. F dom R dom M G dom R dom M x dom M | F x R G x M-ae.
28 19 22 27 3bitr4d φ F R G M-ae. x dom M | F x R G x M-ae.