Step |
Hyp |
Ref |
Expression |
1 |
|
brfae.0 |
⊢ dom 𝑅 = 𝐷 |
2 |
|
brfae.1 |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
3 |
|
brfae.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
4 |
|
brfae.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 ↑m ∪ dom 𝑀 ) ) |
5 |
|
brfae.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 ↑m ∪ dom 𝑀 ) ) |
6 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 ) |
7 |
6
|
eleq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ↔ 𝐹 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
9 |
8
|
eleq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ↔ 𝐺 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ) |
10 |
7 9
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ↔ ( 𝐹 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝐺 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ) ) |
11 |
6
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
12 |
8
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
13 |
11 12
|
breq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
14 |
13
|
rabbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } = { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) } ) |
15 |
14
|
breq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ↔ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) } a.e. 𝑀 ) ) |
16 |
10 15
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) ↔ ( ( 𝐹 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝐺 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) } a.e. 𝑀 ) ) ) |
17 |
|
eqid |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } |
18 |
16 17
|
brabga |
⊢ ( ( 𝐹 ∈ ( 𝐷 ↑m ∪ dom 𝑀 ) ∧ 𝐺 ∈ ( 𝐷 ↑m ∪ dom 𝑀 ) ) → ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } 𝐺 ↔ ( ( 𝐹 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝐺 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) } a.e. 𝑀 ) ) ) |
19 |
4 5 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } 𝐺 ↔ ( ( 𝐹 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝐺 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) } a.e. 𝑀 ) ) ) |
20 |
|
faeval |
⊢ ( ( 𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures ) → ( 𝑅 ~ a.e. 𝑀 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ) |
21 |
2 3 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ~ a.e. 𝑀 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ) |
22 |
21
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑅 ~ a.e. 𝑀 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } 𝐺 ) ) |
23 |
1
|
oveq1i |
⊢ ( dom 𝑅 ↑m ∪ dom 𝑀 ) = ( 𝐷 ↑m ∪ dom 𝑀 ) |
24 |
4 23
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) |
25 |
5 23
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) |
26 |
24 25
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝐺 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ) |
27 |
26
|
biantrurd |
⊢ ( 𝜑 → ( { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) } a.e. 𝑀 ↔ ( ( 𝐹 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝐺 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) } a.e. 𝑀 ) ) ) |
28 |
19 22 27
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐹 ( 𝑅 ~ a.e. 𝑀 ) 𝐺 ↔ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) } a.e. 𝑀 ) ) |