Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → 𝑟 = 𝑅 ) |
2 |
1
|
dmeqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → dom 𝑟 = dom 𝑅 ) |
3 |
|
simpr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
4 |
3
|
dmeqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → dom 𝑚 = dom 𝑀 ) |
5 |
4
|
unieqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ∪ dom 𝑚 = ∪ dom 𝑀 ) |
6 |
2 5
|
oveq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ( dom 𝑟 ↑m ∪ dom 𝑚 ) = ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) |
7 |
6
|
eleq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ( 𝑓 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ↔ 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ) |
8 |
6
|
eleq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ( 𝑔 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ↔ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ) |
9 |
7 8
|
anbi12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ( ( 𝑓 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ∧ 𝑔 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ) ↔ ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ) ) |
10 |
1
|
breqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ( ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) |
11 |
5 10
|
rabeqbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → { 𝑥 ∈ ∪ dom 𝑚 ∣ ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } = { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } ) |
12 |
11 3
|
breq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ( { 𝑥 ∈ ∪ dom 𝑚 ∣ ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑚 ↔ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) ) |
13 |
9 12
|
anbi12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑓 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ∧ 𝑔 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑚 ∣ ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑚 ) ↔ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) ) ) |
14 |
13
|
opabbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑚 = 𝑀 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ∧ 𝑔 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑚 ∣ ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑚 ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ) |
15 |
|
df-fae |
⊢ ~ a.e. = ( 𝑟 ∈ V , 𝑚 ∈ ∪ ran measures ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ∧ 𝑔 ∈ ( dom 𝑟 ↑m ∪ dom 𝑚 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑚 ∣ ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑚 ) } ) |
16 |
|
ovex |
⊢ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∈ V |
17 |
16 16
|
xpex |
⊢ ( ( dom 𝑅 ↑m ∪ dom 𝑀 ) × ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∈ V |
18 |
|
opabssxp |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ⊆ ( ( dom 𝑅 ↑m ∪ dom 𝑀 ) × ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) |
19 |
17 18
|
ssexi |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ∈ V |
20 |
14 15 19
|
ovmpoa |
⊢ ( ( 𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures ) → ( 𝑅 ~ a.e. 𝑀 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ) |