| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  𝑟  =  𝑅 ) | 
						
							| 2 | 1 | dmeqd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  dom  𝑟  =  dom  𝑅 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  𝑚  =  𝑀 ) | 
						
							| 4 | 3 | dmeqd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  dom  𝑚  =  dom  𝑀 ) | 
						
							| 5 | 4 | unieqd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ∪  dom  𝑚  =  ∪  dom  𝑀 ) | 
						
							| 6 | 2 5 | oveq12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ( dom  𝑟  ↑m  ∪  dom  𝑚 )  =  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ( 𝑓  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 )  ↔  𝑓  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) ) ) | 
						
							| 8 | 6 | eleq2d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ( 𝑔  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 )  ↔  𝑔  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) ) ) | 
						
							| 9 | 7 8 | anbi12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ( ( 𝑓  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 )  ∧  𝑔  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 ) )  ↔  ( 𝑓  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ∧  𝑔  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) ) ) ) | 
						
							| 10 | 1 | breqd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ( ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 )  ↔  ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 11 | 5 10 | rabeqbidv | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  { 𝑥  ∈  ∪  dom  𝑚  ∣  ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) }  =  { 𝑥  ∈  ∪  dom  𝑀  ∣  ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } ) | 
						
							| 12 | 11 3 | breq12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ( { 𝑥  ∈  ∪  dom  𝑚  ∣  ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑚  ↔  { 𝑥  ∈  ∪  dom  𝑀  ∣  ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) ) | 
						
							| 13 | 9 12 | anbi12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  ( ( ( 𝑓  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 )  ∧  𝑔  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 ) )  ∧  { 𝑥  ∈  ∪  dom  𝑚  ∣  ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑚 )  ↔  ( ( 𝑓  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ∧  𝑔  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) )  ∧  { 𝑥  ∈  ∪  dom  𝑀  ∣  ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) ) ) | 
						
							| 14 | 13 | opabbidv | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑚  =  𝑀 )  →  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 )  ∧  𝑔  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 ) )  ∧  { 𝑥  ∈  ∪  dom  𝑚  ∣  ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑚 ) }  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ∧  𝑔  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) )  ∧  { 𝑥  ∈  ∪  dom  𝑀  ∣  ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ) | 
						
							| 15 |  | df-fae | ⊢ ~ a.e.  =  ( 𝑟  ∈  V ,  𝑚  ∈  ∪  ran  measures  ↦  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 )  ∧  𝑔  ∈  ( dom  𝑟  ↑m  ∪  dom  𝑚 ) )  ∧  { 𝑥  ∈  ∪  dom  𝑚  ∣  ( 𝑓 ‘ 𝑥 ) 𝑟 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑚 ) } ) | 
						
							| 16 |  | ovex | ⊢ ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ∈  V | 
						
							| 17 | 16 16 | xpex | ⊢ ( ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ×  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) )  ∈  V | 
						
							| 18 |  | opabssxp | ⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ∧  𝑔  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) )  ∧  { 𝑥  ∈  ∪  dom  𝑀  ∣  ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) }  ⊆  ( ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ×  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) ) | 
						
							| 19 | 17 18 | ssexi | ⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ∧  𝑔  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) )  ∧  { 𝑥  ∈  ∪  dom  𝑀  ∣  ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) }  ∈  V | 
						
							| 20 | 14 15 19 | ovmpoa | ⊢ ( ( 𝑅  ∈  V  ∧  𝑀  ∈  ∪  ran  measures )  →  ( 𝑅 ~ a.e. 𝑀 )  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 )  ∧  𝑔  ∈  ( dom  𝑅  ↑m  ∪  dom  𝑀 ) )  ∧  { 𝑥  ∈  ∪  dom  𝑀  ∣  ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ) |