Step |
Hyp |
Ref |
Expression |
1 |
|
relopabv |
⊢ Rel { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } |
2 |
|
faeval |
⊢ ( ( 𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures ) → ( 𝑅 ~ a.e. 𝑀 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ) |
3 |
2
|
releqd |
⊢ ( ( 𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures ) → ( Rel ( 𝑅 ~ a.e. 𝑀 ) ↔ Rel { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ∧ 𝑔 ∈ ( dom 𝑅 ↑m ∪ dom 𝑀 ) ) ∧ { 𝑥 ∈ ∪ dom 𝑀 ∣ ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) } a.e. 𝑀 ) } ) ) |
4 |
1 3
|
mpbiri |
⊢ ( ( 𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures ) → Rel ( 𝑅 ~ a.e. 𝑀 ) ) |