| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
| 2 |
|
imaeq2 |
|- ( { A } = (/) -> ( R " { A } ) = ( R " (/) ) ) |
| 3 |
1 2
|
sylbi |
|- ( -. A e. _V -> ( R " { A } ) = ( R " (/) ) ) |
| 4 |
|
ima0 |
|- ( R " (/) ) = (/) |
| 5 |
3 4
|
eqtrdi |
|- ( -. A e. _V -> ( R " { A } ) = (/) ) |
| 6 |
5
|
adantl |
|- ( ( Rel R /\ -. A e. _V ) -> ( R " { A } ) = (/) ) |
| 7 |
|
brrelex1 |
|- ( ( Rel R /\ A R y ) -> A e. _V ) |
| 8 |
7
|
stoic1a |
|- ( ( Rel R /\ -. A e. _V ) -> -. A R y ) |
| 9 |
8
|
nexdv |
|- ( ( Rel R /\ -. A e. _V ) -> -. E. y A R y ) |
| 10 |
|
abn0 |
|- ( { y | A R y } =/= (/) <-> E. y A R y ) |
| 11 |
10
|
necon1bbii |
|- ( -. E. y A R y <-> { y | A R y } = (/) ) |
| 12 |
9 11
|
sylib |
|- ( ( Rel R /\ -. A e. _V ) -> { y | A R y } = (/) ) |
| 13 |
6 12
|
eqtr4d |
|- ( ( Rel R /\ -. A e. _V ) -> ( R " { A } ) = { y | A R y } ) |
| 14 |
13
|
ex |
|- ( Rel R -> ( -. A e. _V -> ( R " { A } ) = { y | A R y } ) ) |
| 15 |
|
imasng |
|- ( A e. _V -> ( R " { A } ) = { y | A R y } ) |
| 16 |
14 15
|
pm2.61d2 |
|- ( Rel R -> ( R " { A } ) = { y | A R y } ) |