Metamath Proof Explorer


Theorem relopabiALT

Description: Alternate proof of relopabi (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis relopabi.1
|- A = { <. x , y >. | ph }
Assertion relopabiALT
|- Rel A

Proof

Step Hyp Ref Expression
1 relopabi.1
 |-  A = { <. x , y >. | ph }
2 df-opab
 |-  { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) }
3 1 2 eqtri
 |-  A = { z | E. x E. y ( z = <. x , y >. /\ ph ) }
4 vex
 |-  x e. _V
5 vex
 |-  y e. _V
6 4 5 opelvv
 |-  <. x , y >. e. ( _V X. _V )
7 eleq1
 |-  ( z = <. x , y >. -> ( z e. ( _V X. _V ) <-> <. x , y >. e. ( _V X. _V ) ) )
8 6 7 mpbiri
 |-  ( z = <. x , y >. -> z e. ( _V X. _V ) )
9 8 adantr
 |-  ( ( z = <. x , y >. /\ ph ) -> z e. ( _V X. _V ) )
10 9 exlimivv
 |-  ( E. x E. y ( z = <. x , y >. /\ ph ) -> z e. ( _V X. _V ) )
11 10 abssi
 |-  { z | E. x E. y ( z = <. x , y >. /\ ph ) } C_ ( _V X. _V )
12 3 11 eqsstri
 |-  A C_ ( _V X. _V )
13 df-rel
 |-  ( Rel A <-> A C_ ( _V X. _V ) )
14 12 13 mpbir
 |-  Rel A