| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relfld |
|- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |
| 2 |
1
|
reseq2d |
|- ( Rel R -> ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) ) |
| 3 |
|
resundi |
|- ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) |
| 4 |
|
eqtr |
|- ( ( ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) /\ ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) -> ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) |
| 5 |
|
resss |
|- ( R |` ran R ) C_ R |
| 6 |
|
resdm |
|- ( Rel R -> ( R |` dom R ) = R ) |
| 7 |
|
ssequn2 |
|- ( ( R |` ran R ) C_ R <-> ( R u. ( R |` ran R ) ) = R ) |
| 8 |
|
uneq1 |
|- ( ( R |` dom R ) = R -> ( ( R |` dom R ) u. ( R |` ran R ) ) = ( R u. ( R |` ran R ) ) ) |
| 9 |
8
|
eqeq2d |
|- ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) <-> ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) ) ) |
| 10 |
|
eqtr |
|- ( ( ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) /\ ( R u. ( R |` ran R ) ) = R ) -> ( R |` U. U. R ) = R ) |
| 11 |
10
|
ex |
|- ( ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) -> ( ( R u. ( R |` ran R ) ) = R -> ( R |` U. U. R ) = R ) ) |
| 12 |
9 11
|
biimtrdi |
|- ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( ( R u. ( R |` ran R ) ) = R -> ( R |` U. U. R ) = R ) ) ) |
| 13 |
12
|
com3r |
|- ( ( R u. ( R |` ran R ) ) = R -> ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) ) |
| 14 |
7 13
|
sylbi |
|- ( ( R |` ran R ) C_ R -> ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) ) |
| 15 |
5 6 14
|
mpsyl |
|- ( Rel R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) |
| 16 |
4 15
|
syl5com |
|- ( ( ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) /\ ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) -> ( Rel R -> ( R |` U. U. R ) = R ) ) |
| 17 |
2 3 16
|
sylancl |
|- ( Rel R -> ( Rel R -> ( R |` U. U. R ) = R ) ) |
| 18 |
17
|
pm2.43i |
|- ( Rel R -> ( R |` U. U. R ) = R ) |